
RAG大模型
文章平均质量分 70
哪车没挂人定位问题才是真正技术活
算法才是真言
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
这一范式已成为工业界大模型训练的标准流程 掌握这一流程是不是算入门了(多看看b站)
基于这些信息,我会这样回答用户:掌握三阶段训练流程只是入门的一部分,真正的入门还需要理解整个大模型训练的生命周期(从数据准备到部署应用),并具备相关的基础知识(数学、编程、算法等)。该范式已成为OpenAI、Anthropic、国内头部厂商(如阿里、百度)的标准训练流程,熟悉它等于掌握了行业通用方法论[citation:4][citation:6]。数据工程:三阶段流程依赖高质量数据,但数据清洗、标注、分词(如BPE算法)、质量评估等技能需额外学习[citation:1][citation:6]。原创 2025-06-26 17:22:41 · 316 阅读 · 0 评论 -
这一范式已成为工业界大模型训练的标准流程 是不是类似于java开发 的mvc模式
大模型训练的三阶段范式(预训练 → SFT → RLHF)与 Java 开发中的 MVC(Model-View-Controller)模式确实存在架构思想上的相似性——两者都通过“分层解耦”实现复杂系统的模块化分工。核心分层 预训练(基础能力)→ SFT(任务适配)→ RLHF(行为对齐) Model(数据逻辑)→ View(展示)→ Controller(调度) 均将系统拆分为功能独立、顺序协作的模块。MVC的三个组件可以并行开发,而大模型训练的三个阶段是顺序进行的。这是个很好的跨领域思考问题。原创 2025-06-26 17:21:21 · 276 阅读 · 0 评论 -
目前 大模型分三个阶段 第一阶段是语义分析 第二阶段是 微调 第三阶段是 奖赏机制 替换成专业的名称
技术内涵:通过人类对模型输出的偏好标注训练奖励模型(Reward Model),再以强化学习(如PPO算法)优化模型策略,使其输出更符合人类价值观[citation:1][citation:5]。技术内涵:在预训练模型基础上,使用高质量标注数据(如指令-答案对)进行任务适配训练,优化模型对特定任务的响应能力[citation:3][citation:4][citation:5]。预训练是模型能力的“地基”,参数量(千亿级)和数据规模(TB级)决定潜力上限[citation:1][citation:5]。原创 2025-06-26 17:19:05 · 260 阅读 · 0 评论 -
【NGINX】打开 http://localhost/images/nginx-logo.png 为啥应显示图片
如果仍有问题,建议从错误日志和curl测试入手排查。xxx解决了啥问题 如果不用会出现啥麻烦。针对每个问题写一个demo。原创 2025-03-26 09:47:51 · 369 阅读 · 0 评论 -
学习大模型应该先提出哪些问题?
定义:大语言模型是一种基于深度学习技术的人工智能模型,通常使用大量的文本数据进行训练,能够生成自然语言文本。目标:通过学习语言的模式和结构,生成连贯、有意义的文本,完成各种自然语言处理任务。训练过程:通过无监督学习(如自回归语言模型)或监督学习(如问答系统)的方式,使用大量文本数据进行训练。生成机制:模型根据输入的提示(prompt)生成文本,通常是通过预测下一个单词或字符的概率分布来逐步生成文本。伦理和法律规范:随着技术的发展,伦理和法律规范将更加完善,以确保模型的合理使用。原创 2025-01-25 16:35:51 · 475 阅读 · 0 评论 -
etrieval-Augmented Generation 啥意思
Retrieval-Augmented Generation(RAG)是一种结合了信息检索和文本生成的自然语言处理技术。它的基本思路是通过检索与输入相关的外部信息(如文档、知识库等),然后基于这些检索到的信息生成更准确、更上下文相关的文本回应。原创 2024-12-05 15:23:58 · 448 阅读 · 0 评论 -
搭建和优化 Retrieval-Augmented Generation(RAG)模型 具体步骤
搭建和优化Retrieval-Augmented Generation (RAG) 模型可以分为多个具体步骤,从环境准备到模型训练和优化。原创 2024-12-05 15:20:52 · 991 阅读 · 0 评论