62.不同路径
动态规划五部曲:
- 确定dp数组以及下标含义
- 从dp[0][0]走到dp[i][j]有多少条路劲
- 确定递推公式
- 状态转移方程 dp[i,j] = dp[i - 1,j] + dp[i,j-1];
- dp数组如何初始化
- dp[i, 0] = 1; dp[0,j] = 1;
- 确定遍历顺序
- dp[i]是依赖 dp[i - 1] 和 dp[j - 1]→遍历的顺序一定是从前到后遍历的
- 举例推导dp数组
public class Solution
{
public int UniquePaths(int m, int n)
{
int[,] dp = new int[m, n];
for (int i = 0; i < m; i++) dp[i, 0] = 1;
for (int j = 0; j < n; j++) dp[0, j] = 1;
for (int i = 1; i < m; i++)
{
for (int j = 1; j < n; j++)
{
dp[i, j] = dp[i - 1, j] + dp[i, j - 1];
}
}
return dp[m - 1, n - 1];
}
}
63. 不同路径 II
与上题不同的点在于:
动归五部曲中的初始化,如果一旦遇到障碍物,该行或该列就停止初始化1
public class Solution {
public int UniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.Length;
int n = obstacleGrid[0].Length;
int[,] dp=new int[m,n];
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1) return 0;
for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) dp[i,0]=1;
for(int j=0;j<n&&obstacleGrid[0][j]==0;j++) dp[0,j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]==1) continue;
dp[i,j]=dp[i-1,j]+dp[i,j-1];
}
}
return dp[m-1,n-1];
}
}
343. 整数拆分
动态规划五部曲:
-
创建一个 dp 数组,其中 dp [i] 表示整数 i 拆分后的最大乘积
-
初始化 dp [2] = 1,因为 2 只能拆分为 1+1,乘积为 1
-
对于每个 i 从 3 到 n,计算它的最大乘积:
-
尝试将 i 拆分为 j 和 (i-j),其中 j 从 1 到 i/2(因为拆分具有对称性)
-
对于每种拆分方式,有两种选择:直接使用 j*(i-j) 作为乘积,或者使用 j 乘以 (i-j) 的最大拆分乘积 (dp [i-j])
-
取所有可能拆分方式中的最大值作为 dp [i]
public class Solution
{
public int IntegerBreak(int n)
{
int[] dp = new int[n + 1];
dp[2] = 1;
for (int i = 3; i <= n; i++)
{
for (int j = 1; j <= i / 2; j++)
{
dp[i] = Math.Max(dp[i],Math.Max(j*(i-j),j*dp[i-j]));
}
}
return dp[n];
}
}