时间序列分解模块对比分析
图4展示了时间序列分解模块在不同情况下对预测模型的影响。通过比较没有分解模块、一个分解模块、两个分解模块和三个分解模块的效果,我们可以看到分解模块在捕捉趋势和季节性部分中的重要性。
(a) 没有分解模块
- 表现:无法准确捕捉到时间序列中的上升趋势和季节性变化。
- 趋势部分:模型未能识别出明显的上升趋势,趋势线保持不变。
- 季节性部分:季节性变化的幅度较小,未能准确反映时间序列的季节性波动。
(b) 一个分解模块
- 表现:开始捕捉到部分趋势和季节性变化。
- 趋势部分:趋势线开始上升,但还不够精确。
- 季节性部分:季节性变化的峰值和谷值有所改善,但仍有提升空间。
© 两个分解模块
- 表现:能够较好地捕捉到时间序列中的趋势和季节性变化。
- 趋势部分:趋势线明显上升,反映了时间序列中的长期变化趋势。
- 季节性部分:季节性变化的峰值和谷值更加准确,模型能够识别出周期性的波动。
(d) 三个分解模块
- 表现:进一步优化了趋势和季节性部分的捕捉。