快速全局配准(Fast Global Registration)

### Fast Global Registration 算法原理 #### 1. 简介 Fast Global Registration (FGR) 是一种用于部分重叠3D表面的快速全局配准算法[^2]。此算法旨在提高传统迭代最近点(ICP)等局部优化方法的速度和精度。 #### 2. 主要特点 - **非迭代特性**:不同于传统的基于迭代的方法,FGR 不依赖于反复调整参数来达到最优解。 - **高效性**:通过减少不必要的计算步骤,在保持高精度的同时显著提升了处理速度。 - **鲁棒性强**:即使面对噪声数据或者存在较大初始误差的情况也能稳定工作。 #### 3. 关键技术 ##### 3.1 特征描述子构建 为了实现高效的匹,FGR 使用了精心设计的特征描述符,这些描述符能够有效地捕捉几何形状的信息并支持快速检索相似区域. ##### 3.2 高维直方图表示 采用多维度直方图的形式对点云中的每一个点进行编码,从而形成紧凑而富有表达力的数据结构这有助于加速后续阶段中候选对应关系的选择过程.[^4] ##### 3.3 可靠对应的筛选机制 利用统计学原则去除错误匹项保留最有可能构成正确变换矩阵基础的那一组点对集合;具体来说就是根据距离度量标挑选出那些具有最小化残差平方和特性的样本作为最终输入给求解器使用的依据. ##### 3.4 刚体运动估计 最后一步则是运用稳健估计理论框架下的优化策略—比如加权最小二乘法(WLS)—去寻找能使所有选定可靠对应之间相对位移尽可能小的最佳旋转和平移向量组合方案完成整个注册流程. ```python import numpy as np from open3d.cpu.pybind.registration import registration_fast_based_on_feature_matching def fast_global_registration(source_cloud, target_cloud): result = registration_fast_based_on_feature_matching( source=source_cloud, target=target_cloud, use_absolute_scale=True, max_correspondence_distance=np.inf, estimation_method="point_to_plane" ) return result.transformation_matrix ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值