论文精度 —— 2018 CVPR《Generative Image Inpainting with Contextual Attention》

本文详细介绍了2018年CVPR论文《Generative Image Inpainting with Contextual Attention》。文章采用WGAN-GP替代DCGAN,结合上下文注意力层进行图像修复,提出了一种分阶段的生成网络,以解决图像缺失区域的修复问题。通过在Places2、CelebA等数据集上的实验,展示了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总述

本篇论文采用的baseline不是CE,而是2017 ACM的《lobally and locally consistent image completion》,那篇论文以CE为baseline,引入了全局鉴别器和局部鉴别器。这篇文章提出了上下文注意力层,使得可以关注到距离缺失区域较为遥远的像素点;此外,作者摒弃了之前常用的DCGAN,而是使用创新地WGAN-GP,还采用了两个encoder,一粗一细。

一、方法详述

1. 网络与损失

作者是在《lobally and locally consistent image completion》的基础上进行改进的,输入输出的shape都相同,生成网络包含两个阶段,由粗到细进行补全,第一阶段的补全仅仅使用重建损失作为损失函数,卷积过程中借用了《lobally and locally consistent image completion》膨胀卷积的方法,实现初步的补全,然后再精细补全,损失函数所有改进,使用了重建损失和WGAN-GP联合损失,其中WGAN-GP损失使用全局的和局部的进行联合,这还是因为受到了《lobally and locally consistent image completion》的启发。由于使用了GAN,因此第二个网络有全局效果,使得整个补全内容与整个场景内容契合。
注:(1)感知损失虽然可能会使得补全结果有点模糊,但是可以使得内容贴切,是不可或缺的。
(2)作者觉得Perceptual loss, style loss and total variation loss没啥用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天使Di María

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值