归纳递推:取物输赢问题

该博客探讨了一个双人游戏策略问题,玩家轮流从100个物品中取物,可取1、3、4或6个。通过表格填数法和动态规划分析,得出先手在特定情况下能确保获胜的策略。文章提供了AC代码实现,展示了如何确定先取者是否能赢得游戏,并给出了获胜条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

取物输赢问题

  100个物品,两个玩家a,b轮流从这堆物品中取物,规定每次可以取的数目可以是1,3,4,6。最后一次取光者得胜。问为了获胜应该先取还是后取,应采取什么策略。

思路分析

采用表格填数法逐步分析:

物品个数 iii123456
先取输赢 f(i)f(i)f(i)101111

表中0表示先取为输,1表示先取为赢
如果想让先取为赢的话,玩家在还剩 iii 个物品时选择一个数目x(x=1,3,4,6)x(x = 1,3,4,6)x(x=1,3,4,6),使得对方处于f(i−x)=0f(i-x)=0f(ix)=0的状态。

AC代码

#include<iostream>
using namespace std;
const int MAXSIZE = 10000;
int f[MAXSIZE];
int main(){
	ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL);
	int n;
	cin >> n;
	f[0] = f[2] = 0;
	f[1] = f[3] = f[4] = f[5] = f[6] = 1;
	for(int i = 7; i <= n; i++)
		f[i] = !(f[i-1] && f[i-3] && f[i-4] && f[i-6]);
	if(f[n]) cout << "先取者赢!" << endl;
	else cout << "先取者输!" << endl;
	return 0; 
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值