算法竞赛进阶指南 基本算法 0x06 倍增

本文介绍了倍增算法的概念及其在解决在线问题中的应用,如求解序列上的最大和不超过给定值的元素个数。同时,详细阐述了ST表的构建和使用,用于在线查询区间最值问题,实现O(NlogN)预处理和O(1)查询的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倍增 指的是我们在进行递推时,如果状态空间很大,通常的线性递推无法满足时空要求,那么我们可以通过成倍增长的方式,只递推状态空间中在2的整数次幂位置上的值作为代表;当需要其他位置上的值时,我们通过“任意整数可以表示成若干个2的次幂项的和”这一性质,使用之前求出的代表值拼成所需的值;所以使用倍增算法也要求我们递推的问题的状态空间关于2的次幂具有可划分性

“倍增”与“二进制划分”两个思想互相结合,降低了很多时空复杂度;快速幂其实就是“倍增”与“二进制划分”思想的一种体现

研究序列上的倍增问题,包括求解RMQ(区间最值)问题的ST算法
求解最近公共祖先LCA等在树上的倍增应用,将在0x63节探讨

例题

题意 :

  • 给定一个长度为 N 的数列 A ,然后进行若干次查询 , 每一次给定一个整数 T , 求出最大的 k , 满足 ∑i=1kA[i]≤T\sum ^k _{i=1}A[i] \leq Ti=1kA[i]T。你的算法必须是在线的(必须即时回答每一个询问,不能等待收到所有询问后再统一处理),假设0≤T≤∑i=1NA[i]0 \leq T \leq \sum^N_{i=1}A[i]0Ti=1NA[i]

思路 :

  • 朴素:从前往后枚举k,最坏情况为O(N)O(N)O(N)
  • 若能够先花费O(N)O(N)O(N)时间预处理A的前缀和数组S,就可以二分k的位置,比较S[k]与T的大小,每次询问花费时间为O(logN)O(logN)O(logN);这个算法在平均情况下表现很好;但缺点是如果每次询问给定的整数T都非常小,造成答案k也非常小,那么算法可能还不如从前往后枚举更优
  • 我们可以设计这样一种 倍增算法:(通过若干长度为2的次幂的区间拼成最后的k,时间复杂度级别为答案的对数,能够应对T的各种大小情况)
    1、令 p = 1, k = 0, sum = 0;
    2、比较“A数组中k之后的p个数的和”与T的关系,也就是说,如果 sum + S[k + p] - S[k] <= T,则令 sum += S[k + p] - S[k], k += p, p *= 2,即累加这p个数的和,然后把p的跨度增长一倍;反之,如果大于,则令 p /= 2
    3、重复上一步,直到 p == 0,此时k就是答案
    4、注意我们这里还要加一个特判,因为p有可能小于k
int main() {
    cin >> n >> T;
    for (int i = 1; i <= n; ++ i) {
        cin >> a[i];
        s[i] = a[i] + s[i - 1];
    }
    int k = 0, p = 1, sum = 0;
    while (p) {
        if (sum + s[k + p] - s[k] >= T && s[k + p] > s[k]) {
            sum += s[k + p] - s[k];
            k += p;
            p *= 2;
        } else {
            p /= 2;
        }
    }
    cout << k;
}

(-)AcWing 109. 天才ACM

ST算法

在RMQ区间最值问题中,著名的ST算法就是倍增的产物
给定一个长为N的数列A,ST算法能在O(NlogN)O(NlogN)O(NlogN)时间的预处理后,以O(1)O(1)O(1)时间复杂度在线回答“数列A中下标在l~r之间的数的最大值是多少”这样的区间最值问题

一个序列的子区间个数显然有O(N2)O(N^2)O(N2)个,根据倍增思想,我们首先在这个规模为O(N2)O(N^2)O(N2)的状态空间里选择一些2的整数次幂的位置作为代表值
设F[i, j]表示数列A中下标在子区间[i,i+2j−1][i, i+2^j-1][i,i+2j1]里的数的最大值,也就是从i开始的2j2^j2j个数的最大值。递推边界显然是F[i,0]=A[i]F[i,0]=A[i]F[i,0]=A[i],即数列A在子区间[i, i]里的最大值
在递推时,我们把子区间的长度成倍增长,有公式F[i,j]=max(F[i,j−1],F[i+2j−1,j−1])F[i,j]=max(F[i,j-1],F[i+2^{j-1},j-1])F[i,j]=max(F[i,j1],F[i+2j1,j1]),即长度为2j2^j2j的子区间的最大值时左右两半长度为为2j−12^{j-1}2j1的子区间的最大值中较大的一个

void ST_prework() {
    for (int i = 1; i <= n; ++ i) f[i][0] = a[i];
    int t = log(n) / log(2) + 1;
    for (int j = 1; j < t; ++ t)
        for (int i = 1; i <= n - (1 << j) + 1; ++ i)
            f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}

当询问任意区间[l, r]的最值时,我们先计算出一个k,满足2k≤r−l+1<2k+12^k \leq r - l + 1 < 2^{k+1}2krl+1<2k+1,也就是使2的k次幂小于区间长度的前提下最大的k;那么“从l开始的2k2^k2k个数“和”以r结尾的2k2^k2k个数“这两段一定覆盖了整个区间[l, r],这两段的最大值分别是F[l, k]和F[r - 2^k + 1, k],二者中较大的那个就是整个区间[l, r]的最值;由于求的是最值,所以这两段只要覆盖区间[l, r]即可,即使有重叠也没关系

int ST_query(int l, int r) {
    int k = log(r - l + 1) / log(2);
    return max(f[l][k], f[r - (1 << k) + 1][k]);
}

简便起见,我们在代码中使用了cmath库中的log函数;该函数效率较高,一般来说对程序性能影响不大;更严格地讲,为了保证复杂度为O(1)O(1)O(1),应该O(N)O(N)O(N)预处理出1~N这N种区间长度各自对应的k值,在询问时直接使用

P3865 【模板】ST 表

#include <iostream>
#include <cmath>
#define endl '\n'
#define _(a) cout << #a << ": " << (a) << "    "
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 1e5 + 10, M = 20;

int n, m;
int a[N];
int f[N][M];

void ST_prework() {
    int t = log(n) / log(2) + 1;
    for (int j = 1; j < t; ++ j)
        for (int i = 1; i <= n - (1 << j) + 1; ++ i)
            f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}
int ST_query(int l, int r) {
    int k = log(r - l + 1) / log(2);
    return max(f[l][k], f[r - (1 << k) + 1][k]);
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> n >> m;
    for (int i = 1; i <= n; ++ i) cin >> a[i];
    for (int i = 1; i <= n; ++ i) f[i][0] = a[i];
    ST_prework();
    while (m -- ) {
        int l, r;
        cin >> l >> r;
        cout << ST_query(l, r) << endl;
    }
}

(-)LCA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值