AI4PDEs新热点!基于极限学习机、随机特征、区域分解、最小二乘方法求解线性、非线性PDE方程组,高精度高效率匹敌传统数值方法

以下文章根据时间线汇总:

鼻祖论文1请添加图片描述

请添加图片描述


局部极限学习机与区域分解方法用于求解线性和非线性偏微分方程
作者: Suchuan Dong¹, Zongwei Li²
所属机构:
¹ 美国普渡大学,计算与应用数学中心,数学系,西拉斐特,印第安纳州,美国
² 美国普渡大学,数学系,韦恩堡,印第安纳州,美国接收日期: 2020年12月19日
修订日期: 2021年4月2日
接受日期: 2021年6月17日
在线发布时间: xxxx

摘要:
我们提出了一种基于神经网络的方法,通过结合极限学习机(Extreme Learning Machine, ELM)、区域分解和局部神经网络的思想,用于求解线性和非线性偏微分方程。在每个子域内,场解由一个局部前馈神经网络表示,并在子域边界上施加 (C^k) 连续性条件。每个局部神经网络由少量隐藏层组成,但其最后一层隐藏层可以很宽。局部神经网络所有隐藏层中的权重/偏置系数预设为随机值,并在整个计算过程中固定,仅输出层的权重系数为训练参数。整个神经网络通过线性或非线性最小二乘计算进行训练,而非使用反向传播算法。针对时间相关的线性/非线性偏微分方程的长期动态模拟,我们结合提出的方法引入了一种块时间推进方案。当前方法对神经网络自由度具有清晰的收敛性,随着训练参数数量、训练数据点数量或子域数量的增加,其数值误差通常呈指数或近似指数下降。我们进行了广泛的数值实验,以证明该方法的计算性能,并展示其在一些测试问题中的长期动态模拟能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值