
深度学习
文章平均质量分 55
刘童学。
喜换字节,可以私信交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
cnn训练并用grad-cam可视化
摘要:研究使用CNN模型对5种品牌大米图像(Arborio、Basmati、Ipsala、Jasmine、Karacadag)进行分类训练。采用PyTorch框架构建包含2个卷积层和2个全连接层的简单CNN网络,使用标准预处理和10轮训练。实验还实现Grad-CAM可视化方法,通过提取最后一个卷积层的特征图生成热力图,直观展示模型关注区域。结果表明该方法能有效区分不同品种大米,并为模型决策提供可解释性依据。代码包含完整的训练流程和可视化实现。原创 2025-06-02 21:03:00 · 693 阅读 · 0 评论 -
DAY 41 简单CNN
知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层Flatten -> Dense (with Dropout,可选) -> Dense (Output)卷积层是特征提取器,池化层是特征压缩器。他们二者都是在做下采样操作。一、数据增强。原创 2025-05-31 23:29:56 · 911 阅读 · 0 评论 -
DAY 39 图像相关的神经网络
本文介绍了使用CIFAR-10数据集生成彩色图像的方法。首先设置随机种子确保结果可复现,定义数据预处理步骤包括张量转换和标准化。加载训练集后创建数据加载器,随机选择并显示一张图片,并使用imshow函数进行可视化处理。同时提供了MNIST数据集的处理示例,展示了MLP神经网络的构建过程,包括展平层、全连接层和激活函数的使用。最后详细描述了模型的初始化过程,并提供了模型结构信息的输出方式,适用于CIFAR-10彩色图像(3×32×32)的处理需求。原创 2025-05-29 22:29:00 · 270 阅读 · 0 评论 -
Day 36 复习日
本文摘要:该代码实现了一个基于神经网络的信贷违约预测模型。首先对数据进行预处理,包括缺失值填充、离散变量编码和特征标准化。构建了一个三层MLP网络结构,采用ReLU激活函数和Dropout层防止过拟合。使用交叉熵损失和Adam优化器进行训练,通过tqdm进度条监控训练过程,并记录每200轮的损失和准确率。最后在测试集上评估模型性能,准确率达到90%以上。整体代码结构清晰,包含了数据预处理、模型定义、训练和评估的完整流程。原创 2025-05-25 23:35:55 · 189 阅读 · 0 评论 -
day35 模型可视化与推理
模型训练 :使用 torch 库进行模型训练,训练 20000 个周期,损失值从初始逐渐下降至 0.0625,训练耗时约 40 - 42 秒,还使用 torchsummary 打印了模型摘要,显示总参数为 83 个,可训练参数 83 个。进度条显示 :借助 tqdm 库实现进度条功能,在累加 1 到 10 的过程中,用 set_postfix 方法在进度条右侧显示实时总和。原创 2025-05-24 23:21:43 · 1210 阅读 · 0 评论 -
DAY 34 GPU训练及类的call方法
本文介绍了如何查看CPU和GPU的性能指标,并详细描述了在GPU上进行模型训练的过程。CPU性能主要关注架构代际、核心数和线程数,而GPU性能则需关注显存、级别和架构代际。在GPU训练中,数据和模型需要移动到GPU设备上。文章还解释了在定义前向传播时,可以直接使用self.fc1(x)的原因,并提供了代码示例,展示了如何使用PyTorch在GPU上训练一个多层感知机(MLP)模型。代码包括数据加载、预处理、模型定义、训练过程以及损失曲线的可视化。最后,文章建议复习并思考可能出现的性能问题,如多次读取数据导致原创 2025-05-23 21:34:51 · 175 阅读 · 0 评论 -
DAY 33 简单的神经网络
本文回顾了PyTorch和CUDA的安装与检查流程,包括通过命令行查看显卡信息、验证CUDA是否可用以及获取CUDA设备信息。接着,文章介绍了使用鸢尾花数据集进行神经网络测试的步骤,包括数据加载、归一化处理、转换为PyTorch张量等预处理操作。随后,定义了一个简单的全连接神经网络模型,并详细说明了模型架构、损失函数和优化器的选择。最后,文章展示了模型的训练过程,包括前向传播、反向传播、参数更新以及损失值的记录与可视化。通过这一系列步骤,读者可以了解如何在PyTorch中构建和训练一个简单的神经网络模型。原创 2025-05-22 23:52:55 · 529 阅读 · 0 评论