BILLY BILLY
一个自动驾驶领域的菜鸟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Transformer中的Q 、K、V是什么,为什么要用三个不一样的?
原创 2025-07-22 12:36:35 · 28 阅读 · 0 评论 -
MapDR 在线矢量建图+交通规则理解
遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。而目前的在线建图方法主要关注于车道线、道路拓扑等道路结构的感知,忽视了对于包含更多语义信息的交通规则的理解,这一局限使自动驾驶系统仍然需要依赖离线地图获取交通规则,限制了自动驾驶系统的“在线化”趋势。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,首先理解交通标志牌中指示的车道级交通规则内容,同时要明确规则作用于具体哪一条车道(关联到具体的车道中心线)。原创 2025-07-12 02:30:33 · 21 阅读 · 0 评论 -
端到端矢量化地图构建与规划
原创 2025-07-06 22:16:35 · 85 阅读 · 0 评论 -
零跑记忆行车和记忆泊车融合定位框架设计案例
原创 2025-07-06 10:54:44 · 33 阅读 · 0 评论 -
MapTRV2解读
MapTRV2在V1基础上进行了优化升级,主要改进包括:1)解耦self-attention降低计算复杂度;2)发现BEV特征更适合地图重建任务;3)针对nuScenes等缺少高度信息的场景优化处理;4)补充了中心线建模,并引入训练技巧加速收敛。虽然计算效率提升,但推理速度未明显改善。该版本通过架构优化和训练策略调整,实现了性能提升,是MapTR的增强版。原创 2025-07-06 07:54:06 · 34 阅读 · 0 评论 -
MapTR解读
MapTR技术摘要(150字) MapTR提出了一种创新的高精地图建模方法,通过置换等价建模解决点集顺序问题。核心创新包括:1) 将地图元素建模为具有等价置换的点集,统一处理顺时针/逆时针方向问题;2) 设计层次化查询嵌入结构(实例队列+点队列),采用双层注意力机制获取BEV特征;3) 引入层次化双边匹配策略(实例级+点级匹配)和方向损失约束形状。训练使用多任务损失(类别、曼哈顿距离、方向)和匈牙利算法匹配。该方法通过BEVFormer架构实现,支持端到端训练,有效解决了地图元素建模中的点序敏感性难题,为自原创 2025-07-06 07:48:11 · 34 阅读 · 0 评论 -
NuSences 数据集解析以及 nuScenes devkit 的使用 -- 代码
本文介绍了如何使用NuScenes数据集进行自动驾驶研究。内容主要包括:1)初始化NuScenes数据库并查看场景和样本元数据;2)探索传感器数据、样本注释、实例和类别等数据结构;3)演示数据可视化方法,包括点云渲染、样本渲染和场景视频生成;4)讲解如何通过反向索引和快捷方式高效查询数据。该数据集包含1000个20秒的场景,每半秒标注一次,涵盖激光雷达、雷达和相机等多种传感器数据,为自动驾驶算法开发提供了丰富的多模态标注信息。原创 2025-07-03 20:20:25 · 46 阅读 · 0 评论 -
NuSences 数据集解析以及 nuScenes devkit 的使用 -- 使用教程
本文介绍了NuScenes自动驾驶数据集的使用教程,主要包括:1)数据集下载与结构解析,包含地图、关键帧、过渡帧和元数据文件;2)NuScenes devkit的安装与初始化方法;3)数据结构的详细说明,包括场景、样本、传感器数据、标注、实例、类别等核心概念;4)数据可视化方法,如点云渲染、视频生成和地图显示。教程还提供了反向索引和快捷方式的使用技巧,帮助用户高效查询数据。该数据集包含多模态传感器数据(6相机、1激光雷达、5毫米波雷达)和丰富的标注信息,适用于自动驾驶算法开发。原创 2025-07-03 20:17:31 · 40 阅读 · 0 评论 -
NuSences 数据集解析以及 nuScenes devkit 的使用 -- 官网介绍
nuScenes是由Motional团队开发的大规模自动驾驶数据集,包含波士顿和新加坡的1000个20秒驾驶场景,涵盖复杂交通状况。数据集提供多传感器数据(6摄像头、1激光雷达、5雷达、GPS/IMU)及23类物体的3D标注,含1.4M图像、390k激光雷达扫描和1.4M物体框。相比KITTI,nuScenes标注量多7倍,并首次提供完整传感器套件数据。2020年新增激光雷达点云语义分割标注(32类标签)。数据通过精确校准和同步采集,支持检测、跟踪等任务,旨在推动自动驾驶算法在复杂城市场景中的发展。原创 2025-07-03 19:50:20 · 33 阅读 · 0 评论 -
使用案例 - 根据nuscenes-devkit工具读取nuscnes数据集
本文介绍了NuScenes数据集处理流程:1)安装nuscenes-devkit工具包;2)根据数据集版本和用途获取场景划分;3)创建NuScenes类采样数据并调整文件路径格式;4)构建SegData类继承NuscData,实现数据加载接口;5)创建数据集和DataLoader。关键步骤包括场景划分、数据采样、格式调整和加载器构建,为后续模型训练提供数据支持。原创 2025-07-02 20:22:13 · 64 阅读 · 0 评论 -
智能驾驶感知算法任务简介
典型输出维度为 [B, C, X, Y, Z],其中 B 为 batch size,C 为类别数或 occupancy 状态数,X、Y、Z 表示 3D 空间上的 voxel 网格。多类别建图:支持同时预测多类地图元素,如 divider(车道之间的分隔线)、boundary(道路边界)、arrow(导向箭头)、stopline(停止线) 等。, pn],每个点为 (x, y) 或 (x, y, attr)(带语义)。与传统的栅格输出不同,MapTR 直接输出点序列形式的几何结构,精度更高。原创 2025-07-01 13:22:37 · 33 阅读 · 0 评论 -
LSS中的BevEncoder
LSS的BevEncoder原创 2024-09-16 21:59:10 · 219 阅读 · 0 评论 -
LSS如何做Voxel Pooling
Voxel Pooling原创 2024-09-16 15:11:57 · 393 阅读 · 0 评论 -
LSS如何做深度和语义预测
LSS如何做深度和语义预测原创 2024-09-14 15:52:19 · 257 阅读 · 0 评论 -
LSS如何创建视锥
create_frustum get_geometry原创 2024-09-14 11:44:08 · 221 阅读 · 0 评论 -
LSS可视化分析
LSS可视化分析原创 2024-09-12 23:58:23 · 193 阅读 · 0 评论 -
LSS中如何创建视锥?
LSS中如何创建视锥?原创 2024-09-12 18:04:20 · 154 阅读 · 0 评论 -
LSS可视化中的地图有什么用,怎么用?
LSS可视化中的地图有什么用?原创 2024-09-12 11:04:40 · 137 阅读 · 0 评论 -
如何评价BEV seg模型的指标
如何评价BEV seg模型的指标原创 2024-09-11 14:37:23 · 157 阅读 · 0 评论 -
如何进行匈牙利匹配
如何使用匈牙利匹配来匹配PREDs和GTs原创 2024-09-11 10:24:09 · 237 阅读 · 0 评论 -
【BEV 视图变换】Fast-Ray(1): Fast-BEV论文讲解
Fast-BEV论文讲解原创 2024-08-29 13:10:31 · 473 阅读 · 0 评论 -
【BEV车道线检测】BEV-LaneDet:论文及代码讲解
介绍:这篇文章是在单目场景下在bev视图下实现车道线检测的方法,其车道线检测的基础方法是源自于bev视图下车道线分割,再通过预测几个附加预测头用于辅助后处理。具体来讲创新点主要有三点:(1)使用MLP进行2D特征到3D BEV特征的bev视角转换(为了在低算力芯片上进行部署,没有使用Transformer和LSS等方法)(2)使用虚拟相机(用于MLP方法的空间转换,没有利用起相机参数,所以需要使用标准的虚拟相机,将所有训练的图片根据各自采集车的真实相机内外侧转换到虚拟相机的相机参数下)(3)原创 2024-03-07 15:06:37 · 4236 阅读 · 10 评论 -
【实时建图】MapTR(4)------训练
MAPTR训练原创 2024-08-13 17:11:50 · 271 阅读 · 0 评论 -
【实时建图】MapTR(3)------数据集整理
MapTR 数据集准备原创 2024-08-07 16:27:15 · 233 阅读 · 0 评论 -
【实时建图】MapTR(2)------环境配置
MapTR 环境配置教程原创 2024-08-07 14:55:19 · 242 阅读 · 0 评论 -
【实时建图】MapTR(1)------ 论文详解
MapTR论文解读原创 2024-08-06 23:57:11 · 500 阅读 · 0 评论 -
【BEV perception】LSS:Lift, Splat, Shoot(2) ---- 工程复现(附完整中文注释代码)
LSS模型复现原创 2024-07-28 09:30:41 · 580 阅读 · 0 评论 -
【BEV perception】LSS:Lift,Splat,Shoot(3) ---- 核心代码解读
LSS模型核心代码阅读原创 2024-07-27 03:32:35 · 734 阅读 · 0 评论 -
【BEV perception】LSS:Lift,Splat,Shoot(4) ---- dataloader代码解读
LSS模型 dataloader代码阅读原创 2024-07-26 13:33:02 · 316 阅读 · 0 评论 -
纯卷积BEV模型的巅峰战力 | BEVENet不用Transformer一样成就ADAS的量产未来
纯卷积BEV模型的巅峰战力 | BEVENet不用Transformer一样成就ADAS的量产未来原创 2024-07-26 13:30:27 · 220 阅读 · 0 评论 -
transformer(2):手撕Transformer!!从每一模块原理讲解到代码实现
transformer(2):手撕Transformer!!从每一模块原理讲解到代码实现原创 2024-07-03 19:50:01 · 299 阅读 · 0 评论 -
【BEV】BEVDet4D代码跑通教程
【BEV】BEVDet4D代码跑通教程原创 2024-02-27 20:33:27 · 1194 阅读 · 0 评论 -
通道注意力机制 -- Squeeze-and-Excitation (SE)
通道注意力机制 -- Squeeze-and-Excitation (SE)原创 2024-07-01 14:28:14 · 636 阅读 · 0 评论 -
混合注意力机制 -- Convolutional Block Attention Module(CBAM)
混合注意力机制 -- Convolutional Block Attention Module(CBAM)原创 2024-07-01 16:34:33 · 969 阅读 · 0 评论 -
【BEV】BEVFusion总结
【BEV】BEVFusion总结原创 2024-06-30 15:16:48 · 1293 阅读 · 0 评论 -
【保姆级教程】LSS (3):论文阅读
【保姆级教程】LSS (2):数据加载 代码详解原创 2024-07-03 14:11:32 · 430 阅读 · 0 评论 -
【BEV 视图变换】IPM(Inverse Perspective Mapping) 逆透视变换详解
IPM-based BEV视图转换原创 2024-07-03 14:10:51 · 1566 阅读 · 0 评论 -
【BEV】BEVFormer总结
【BEV】BEVFormer总结原创 2024-06-19 20:03:23 · 1603 阅读 · 0 评论 -
transformer(1):transformer模型架构解读
transformer(1):transformer模型架构解读原创 2024-06-03 13:29:17 · 357 阅读 · 0 评论 -
【多模态大模型系列(2)】clip多模态大模型
to be continur...原创 2024-05-06 12:39:41 · 251 阅读 · 0 评论