CIFAR100数据集练习

CIFAR100数据集练习

import tensorflow as tf
import os
class CNNMnist(object):
    def __init__(self):
        (self.train,self.train_label),(self.test,self.test_label)=tf.keras.datasets.cifar100.load_data()
        self.train=self.train.reshape(-1,32,32,3)/255.0
        self.test=self.test.reshape(-1,32,32,3)/255.0

model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(32, kernel_size=5, strides=1,
                            padding='same', data_format='channels_last', activation=tf.nn.relu),
        tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='same'),
        tf.keras.layers.Conv2D(64, kernel_size=5, strides=1,
                            padding='same', data_format='channels_last', activation=tf.nn.relu),
        tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding='same'),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(1024, activation=tf.nn.relu),
        tf.keras.layers.Dense(100, activation=tf.nn.softmax),
    ])

model.compile(optimizer=tf.keras.optimizers.Adam(),
                               loss=tf.keras.losses.sparse_categorical_crossentropy,
                               metrics=['accuracy'])

data=CNNMnist()

model.fit(data.train,data.train_label, epochs=1, batch_size=32)

test_loss, test_acc = model.evaluate(data.test, data.test_label)
print(test_loss, test_acc)


model.save_weights('./checkpoints/my_checkpoint')
model1.load_weights("./checkpoints/my_checkpoint")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值