L1-009 N个数求和

博客围绕有理数N个数求和问题展开,介绍了输入输出格式。作者分享解题过程,最初方法不可行,后调整类型仍有问题,考虑特殊情况和约分问题。最终发现用gcd函数代替约分、只考虑分母大于0可解决,指出测试样例有待提高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。

输入格式:

输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。

输出格式:

输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。

输入样例1:

5
2/5 4/15 1/30 -2/60 8/3

输出样例1:

3 1/3

输入样例2:

2
4/3 2/3

输出样例2:

2

输入样例3:

3
1/3 -1/6 1/8

输出样例3:

7/24

N个数求和 (20 分)_星河欲转。的博客-CSDN博客

//这题问题很大,我最开始是累乘分母,然后用这个累乘结果除以分子再进行累加,然后约分,显然是不行的,后面看到说先输入一个分数,然后再分别输入其他分数,在每次输入时,按照分数之间相加的运算法则进行计算,之后马上进行约分,也就是每一次计算后就约分,而每次计算其实只涉及了两个分数。

在我之前做此题的时候没有得到满分,因为题目说了分子分母都是长整型, 所以再次调整类型输入输出得以通过;可是在后来又不行了,思考过后发现0这个特殊情况以及结果分母是负数情况,但即使注意到这点也不行;现在又看到说约分问题,就是对输入的每一个分数都约分,避免两个分数在计算时直接超过类型的长度,但出现了超时(本人使用循环),不通过的点都是3号测试点。

N个数求和_wys5的博客-CSDN博客_本题的要求很简单,就是求n个数字的和。麻烦的是,这些数字是以有理数分子/分母的形

后面借用了该博主的约分函数,得到了满分 ,但经过删减代码进行评测后,下面这个代码也可以通过,如果按下面代码来说,和分母为0,分母为负数没有什么关系,也不需要考虑对每一个分数约分,而是直接对每两个分数运算过后约分,但以上考虑都是存在的,只能说测试样例没给到,但是3号测试点到底是什么,也就是说,该考虑的点都无关测试,而只是换了一个约分手段,可是他们的结果是一样的,只是可能循环比较慢,但题目未显示超时。 

最大约分函数_星河欲转。的博客-CSDN博客

最合适的解释是,针对这道题,他的有些测试点不全,而我们所欠缺的3号测试点的问题在于,如果我们是通过循环去约分,那么循环定义变量是int类型(这是习惯导致的错误,我们如果直接在龙long long 之后定义循环变量就行),可我们分子分母本就是长整型,于是无法通过该测试点,但是如果改掉这个还是不行,会超时,毕竟长整型如果通过循环计算量还是很大的,所以这一题,主要考虑用gcd函数代替约分,然后只考虑分母大于0的情况即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;//typedef将long long名字换为ll,方便使用
ll gcd(ll a,ll b){
    return b==0?a:gcd(b,a%b);//求最大公约数函数,如果b==0,输出a;否则继续递归,gcd(b,a%b).
}
int main(){
    long long a,b,x,y,n;
    cin>>n;
    scanf("%lld/%lld",&a,&b);
    for(int i=1;i<n;i++){
        scanf("%lld/%lld",&x,&y);
        a=a*y+b*x;
        b=b*y;
        ll s2=gcd(a,b);
        a/=s2;b/=s2;
    }
        if(a>b&&a%b)printf("%lld %lld/%lld",a/b,a%b,b);
        else if(a%b==0)printf("%lld",a/b);
        else printf("%lld/%lld",a,b);
    return 0;
}

以下是本人觉得最正确的代码,该题的测试样例有待提高。 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
    return b==0?a:gcd(b,a%b);
}
int main(){
    long long a,b,x,y,n;
    cin>>n;
    scanf("%lld/%lld",&a,&b);
     ll s=gcd(a,b);
    a/=s;b/=s;
    for(int i=1;i<n;i++){
        scanf("%lld/%lld",&x,&y);
        ll s1=gcd(x,y);
        x/=s1;y/=s1;
        a=a*y+b*x;
        b=b*y;
        ll s2=gcd(a,b);
        a/=s2;b/=s2;
    }
    if(a==0)cout<<"0";
    else if(a>0){
        if(a>b&&a%b)printf("%lld %lld/%lld",a/b,a%b,b);
        else if(a%b==0)printf("%lld",a/b);
        else printf("%lld/%lld",a,b);
    }
    else if(a<0){
        if(-a>b&&a%b)printf("%lld %lld/%lld",a/b,a%b,b);
        else if(-a%b==0)printf("%lld",a/b);
        else printf("%lld/%lld",a,b);
    }
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星河欲转。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值