Leetcode刷题java之 3216. 交换后字典序最小的字符串
解题思路
1. 数据结构设计
SegNode:代表线段树中的一个节点,其中 v00, v01, v10, v11 分别表示四种状态下的最大值:
v00:不选当前节点及其前一个节点时的最大和。
v01:不选当前节点但选其前一个节点时的最大和。
v10:选当前节点但不选其前一个节点时的最大和。
v11:选当前节点也选其前一个节点时的最大和(这里实际上不会使用,因为不允许相邻元素都选)。
SegTree:线段树类,用于维护区间信息。
初始化时创建足够数量的 SegNode 节点。
init 方法用于初始化线段树。
update 方法用于在线段树中更新指定位置的值。
query 方法用于查询整个区间的最大和。
2. 主要逻辑
初始化线段树:遍历 nums 数组,并在线段树中记录每个位置的最大子序列和。
处理查询:对于每个查询 [posi, xi],在线段树中更新 nums[posi] 的值为 xi,并重新计算受影响的节点。
计算最大和:每次更新后,查询整个区间的最大和,并累加到最终结果中。
class SegNode {
long v00, v01, v10, v11;
SegNode() {
v00 = v01 = v10 = v11 = 0;
}
void set(long v) {
v00 = v01 = v10 = 0;
v11 = Math.max(v, 0);
}
long best() {
return v11;
}
}
class SegTree {
int n;
SegNode[] tree;
SegTree(int n) {
this.n = n;
tree = new SegNode[n * 4 + 1];
for (int i = 0; i < tree.length; i++) {
tree[i] = new SegNode();
}
}
void init(int[] nums) {
internalInit(nums, 1, 1, n);
}
void update(int x, int v) {
internalUpdate(1, 1, n, x + 1, v);
}
long query() {
return tree[1].best();
}
private void internalInit(int[] nums, int x, int l, int r) {
if (l == r) {
tree[x].set(nums[l - 1]);
return;
}
int mid = (l + r) / 2;
internalInit(nums, x * 2, l, mid);
internalInit(nums, x * 2 + 1, mid + 1, r);
pushup(x);
}
private void internalUpdate(int x, int l, int r, int pos, int v) {
if (l > pos || r < pos) {
return;
}
if (l == r) {
tree[x].set(v);
return;
}
int mid = (l + r) / 2;
internalUpdate(x * 2, l, mid, pos, v);
internalUpdate(x * 2 + 1, mid + 1, r, pos, v);
pushup(x);
}
private void pushup(int x) {
int l = x * 2, r = x * 2 + 1;
tree[x].v00 = Math.max(tree[l].v00 + tree[r].v10, tree[l].v01 + tree[r].v00);
tree[x].v01 = Math.max(tree[l].v00 + tree[r].v11, tree[l].v01 + tree[r].v01);
tree[x].v10 = Math.max(tree[l].v10 + tree[r].v10, tree[l].v11 + tree[r].v00);
tree[x].v11 = Math.max(tree[l].v10 + tree[r].v11, tree[l].v11 + tree[r].v01);
}
}
class Solution {
public static final int MOD = 1000000007;
public int maximumSumSubsequence(int[] nums, int[][] queries) {
int n = nums.length;
SegTree tree = new SegTree(n);
tree.init(nums);
long ans = 0;
for (int[] q : queries) {
tree.update(q[0], q[1]);
ans = (ans + tree.query()) % MOD;
}
return (int) ans;
}
}