python---协程与任务详解

博客围绕爬虫性能提升展开,指出传统requests+多线程/多进程是阻塞式编程,瓶颈在于网页抓取往返时间。介绍了阻塞、非阻塞、同步、异步、多进程、协程等概念,对比同步调用、多进程、异步IO操作,重点阐述异步协程,用aiohttp实现异步请求,大幅提升爬虫效率,还提及与多进程结合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

之前爬虫使用的是requests+多线程/多进程,后来随着前几天的深入了解,才发现,对于爬虫来说,真正的瓶颈并不是CPU的处理速度,而是对于网页抓取时候的往返时间,因为如果采用requests+多线程/多进程,他本身是阻塞式的编程,所以时间都花费在了等待网页结果的返回和对爬取到的数据的写入上面。而如果采用非阻塞编程,那么就没有这个困扰。这边首先要理解一下阻塞和非阻塞的区别。

(1)阻塞调用是指调用结果返回之前,当前线程会被挂起(线程进入非可执行状态,在这个状态下,CPU不会给线程分配时间片,即线程暂停运行)。函数只有在得到结果之后才会返回。

(2)对于非阻塞则不会挂起,直接执行接下去的程序,返回结果后再回来处理返回值。

其实爬虫的本质就是client(客户端)发请求,批量获取server(服务端)的响应数据,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低。需要强调的是:对于单线程下串行N个任务,并不完全等同于低效,如果这N个任务都是纯计算的任务,那么该线程对cpu的利用率仍然会很高,之所以单线程下串行多个爬虫任务低效,是因为爬虫任务是明显的IO密集型(阻塞)程序。那么该如何提高爬取性能呢?


一. 基本概念了解与学习

1.1 阻塞

  • 阻塞状态指程序未得到所需计算资源时被挂起的状态。程序在等待某个操作完成期间,自身无法继续干别的事情,则称该程序在该操作上是阻塞的。

  • 常见的阻塞形式有:网络 I/O 阻塞、磁盘 I/O 阻塞、用户输入阻塞等。阻塞是无处不在的,包括 CPU 切换上下文时,所有的进程都无法真正干事情,它们也会被阻塞。如果是多核 CPU 则正在执行上下文切换操作的核不可被利用。

1.2 非阻塞

  • 程序在等待某操作过程中,自身不被阻塞,可以继续运行干别的事情,则称该程序在该操作上是非阻塞的。

  • 非阻塞并不是在任何程序级别、任何情况下都可以存在的。仅当程序封装的级别可以囊括独立的子程序单元时,它才可能存在非阻塞状态。

  • 非阻塞的存在是因为阻塞存在,正因为某个操作阻塞导致的耗时与效率低下,我们才要把它变成非阻塞的。

1.3 同步

  • 不同程序单元为了完成某个任务,在执行过程中需靠某种通信方式以协调一致,称这些程序单元是同步执行的。例如购物系统中更新商品库存,需要用“行锁”作为通信信号,让不同的更新请求强制排队顺序执行,那更新库存的操作是同步的。简言之,同步意味着有序。

1.4 异步

  • 为完成某个任务,不同程序单元之间过程中无需通信协调,也能完成任务的方式,不相关的程序单元之间可以是异步的。例如,爬虫下载网页。调度程序调用下载程序后,即可调度其他任务,而无需与该下载任务保持通信以协调行为。不同网页的下载、保存等操作都是无关的,也无需相互通知协调。这些异步操作的完成时刻并不确定。简言之,异步意味着无序。

1.5 多进程

  • 多进程就是利用 CPU 的多核优势,在同一时间并行地执行多个任务,可以大大提高执行效率。

1.6 协程

  • 协程,英文叫做 Coroutine,又称微线程,纤程,协程是一种用户态的轻量级线程。

  • 协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此协程能保留上一次调用时的状态,即所有局部状态的一个特定组合,每次过程重入时,就相当于进入上一次调用的状态。

  • 协程本质上是个单进程,协程相对于多进程来说,无需线程上下文切换的开销,无需原子操作锁定及同步的开销,编程模型也非常简单。

  • 我们可以使用协程来实现异步操作,比如在网络爬虫场景下,我们发出一个请求之后,需要等待一定的时间才能得到响应,但其实在这个等待过程中,程序可以干许多其他的事情,等到响应得到之后才切换回来继续处理,这样可以充分利用 CPU 和其他资源,这就是异步协程的优势。

二. 示例操作对比

2.1 同步调用

  • 同步调用:即提交一个任务后就在原地等待任务结束,等到拿到任务的结果后再继续下一行代码,效率低
import requests
import time


def get_page(url):
    print('下载 %s' % url)
    response = requests.get(url)
    if response.status_code == 200:
        return response.text


def parse_page(res):
    # print(res)
    print('解析 %s' % (len(res)))


def main():
    urls = ['https://www.baidu.com/', 'http://www.sina.com.cn/', 'https://www.python.org']
    for url in urls:
        res = get_page(url)  # 调用一个任务,就在原地等待任务结束拿到结果后才继续往后执行/单步进行
        parse_page(res)


if __name__ == "__main__":
    start = time.time()
    main()
    end = time.time()
    print("花费总时间为 %s" % (end-start))
  • 结果展示

在这里插入图片描述

  • 以上情况,如果遇到高并发需求时,需要花费时间成本过高,效率较低

  • 解决方法如下:

      1. 解决同步调用方案之多线程/多进程
        好处:在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。
        弊端:开启多进程或都线程的方式,我们是无法无限制地开启多进程或多线程的:在遇到要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态。
      1. 解决同步调用方案之线程/进程池
        好处:很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。可以很好的降低系统开销。
        弊端:“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。

2.2 多进程

综上所述,我们可以使用多进程的案例来测试一下
使用 multiprocessing 库:

import requests
import time
import multiprocessing


def request(_):
    url = 'http://127.0.0.1:5000'
    # 添加异常处理机制来捕获和处理可能发生的异常
    try:
        print('Waiting for', url)
        # 设置超时时间
        result = requests.get(url, timeout=5).text
        print('获取到 response 地址来自', url, '页面返回结果:', result)
    except requests.exceptions.RequestException as e:
        print(f'请求失败: {
     
     e}')


if __name__ == '__main__':
    start = time.time()
    # 获取计算机上的CPU核心数并且输出
    cpu_count <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值