1. 引言
随着农业现代化的发展,作物病虫害的识别与防治成为提高农业生产力和减少农药使用的关键问题。传统的农作物病虫害检测方式多依赖人工检查,不仅效率低下,而且容易产生误诊和漏诊。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN)和目标检测算法的成熟,基于深度学习的农作物病虫害检测识别系统已经成为解决这一问题的有效方案。
本文将详细介绍如何基于YOLOv8(You Only Look Once version 8)模型构建一个农作物病虫害检测识别系统,系统包括数据集的准备、YOLOv8模型的训练与优化、UI界面的设计与实现,并提供完整的代码和详细的实现步骤。
目录
2. 深度学习与YOLOv8概述
2.1 深度学习简介
深度学习是机器学习的一个分支,主要通过多层神经网络来学习数据的特征。卷积神经网络(CNN)是深度学习中最重要的网络结构之一,广泛应用于计算机视觉任务,如图像分类、目标检测和图像分割等。在农作物病虫害检测中,CNN通过学习大量标注数据,能够自动提取图像中的特征,识别出农作物上的病虫害。
2.2 YOLOv8简介
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,具有高速和高效的特点,适用于实时目标检测。YOLOv