1. 引言
随着人工智能技术的不断发展,深度学习在计算机视觉领域的应用取得了显著的突破。尤其是在零售行业,智能零售柜的应用已逐渐成为一种趋势。智能零售柜通过自动化商品识别和数据分析,能够有效提升零售管理效率,降低人工成本,并为顾客提供更便捷的购物体验。
本博客将介绍如何基于YOLOv10(You Only Look Once v10)深度学习模型构建一个智能零售柜商品检测识别系统,并通过PyQt5创建用户界面来实时显示商品的识别结果。具体内容包括数据集准备、YOLOv10模型训练、UI界面开发以及系统测试等方面。
目录
2. 系统概述
智能零售柜商品检测识别系统的核心任务是通过摄像头实时捕捉商品图像,并使用深度学习模型进行商品的分类与定位。系统包括以下几个主要组件:
- 数据集准备:获取或生成适用于商品检测的图像数据集。
- YOLOv10模型:利用YOLOv10进行商品的检测与识别。YOLOv10是一种高效的目标检测模型,能够在保持较高精度的同时提供实时检测能力。
- UI界面开发:通过PyQt5设计一个用户友好的界面,允许用户启动摄像头进行商品识别并展示检测结果。
- 性能评估与优化:评估模型的性能,并根据测试结果进行优化。