1. 引言
植物种类识别在生物研究、生态保护、农业监测等领域具有重要应用价值。传统的植物分类依赖于人工鉴定,不仅耗时长,而且对植物学知识要求较高。近年来,随着深度学习技术的发展,基于计算机视觉的植物种类自动识别技术逐渐成熟,其中 YOLOv5 以其高效性和准确性成为生物图像处理中的理想选择。
本博客将详细介绍如何使用 YOLOv5 进行植物种类识别,包括数据集准备、模型训练、UI界面开发以及实时识别系统的搭建。最终,我们将实现一个能够自动识别**植物(plant)、花卉(flower)、树木(tree)**的深度学习系统,并提供完整代码供大家复现。
2. 数据集准备
2.1 参考数据集
训练YOLOv5模型需要一个包含 植物、花卉、树木 三大类别的植物数据集。以下是几个可参考的开源数据集:
- PlantCLEF Dataset(https://www.imageclef.org/PlantCLEF2022):包含大量植物物种的分类数据,可用于训练检测模型。
- Oxford Flowers Dataset(