1. 引言
矿石、矿物以及矿山设备的识别与分类在矿业生产、资源勘探和矿山安全管理等方面具有重要的应用价值。传统的矿物识别依赖于人工分析,如岩相显微镜观察、X射线衍射(XRD)分析等方法,而这些方法往往费时费力,且对专家经验依赖较大。近年来,基于深度学习的计算机视觉技术迅速发展,为矿石、矿物和设备的自动识别提供了一种高效、智能的解决方案。
YOLOv5(You Only Look Once)是一种高效的目标检测算法,具备实时性强、精度高的特点,适用于矿石、矿物和矿山设备的检测与分类。本博客将介绍如何利用YOLOv5训练一个矿石、矿物、设备检测模型,并通过UI界面展示实时检测结果。此外,还将提供完整的数据集参考与代码实现。
2. 数据集
2.1 数据集来源
为了训练和测试YOLOv5模型,我们需要一个包含矿石、矿物和设备的高质量数据集。以下是一些可供参考的公开数据集:
-
Rock Image Dataset(矿石图像数据集)
- 数据量:包含多个矿石种类的高分辨率图像
- 数据来源:Kaggle - Rock Classification Dataset
-
MINERAL10 Dataset(矿物分类数据集)