基于YOLOv5的自动化清洁设备障碍物检测:垃圾、家具、墙壁识别

1. 引言

随着智能家居和自动化清洁设备(如扫地机器人、智能吸尘器等)的普及,如何高效地检测并避开障碍物成为关键问题。障碍物包括:

  • 垃圾(纸屑、塑料瓶、食物残渣等)
  • 家具(椅子、桌子、沙发等)
  • 墙壁(房间边界、门等)

传统的清洁机器人主要依赖激光雷达(LiDAR)和超声波传感器来检测障碍物,但这些方法在检测小型垃圾或复杂家具时存在局限性。基于YOLOv5的深度学习目标检测技术能够实时识别不同类型的障碍物,并引导清洁设备进行避障和路径规划。

本博客将详细介绍如何使用YOLOv5训练垃圾、家具、墙壁的检测模型,并搭建UI界面用于实时检测。最终实现一个高效的智能清洁机器人视觉系统。


2. 数据集

为了训练一个高效的YOLOv5模型,我们需要高质量的障碍物数据集。以下是一些公开数据集,可用于训练和测试模型:

2.1 参考数据集

  1. TrashCan Dataset(垃圾检测数据集)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值