1. 引言
随着智能家居和自动化清洁设备(如扫地机器人、智能吸尘器等)的普及,如何高效地检测并避开障碍物成为关键问题。障碍物包括:
- 垃圾(纸屑、塑料瓶、食物残渣等)
- 家具(椅子、桌子、沙发等)
- 墙壁(房间边界、门等)
传统的清洁机器人主要依赖激光雷达(LiDAR)和超声波传感器来检测障碍物,但这些方法在检测小型垃圾或复杂家具时存在局限性。基于YOLOv5的深度学习目标检测技术能够实时识别不同类型的障碍物,并引导清洁设备进行避障和路径规划。
本博客将详细介绍如何使用YOLOv5训练垃圾、家具、墙壁的检测模型,并搭建UI界面用于实时检测。最终实现一个高效的智能清洁机器人视觉系统。
2. 数据集
为了训练一个高效的YOLOv5模型,我们需要高质量的障碍物数据集。以下是一些公开数据集,可用于训练和测试模型:
2.1 参考数据集
-
TrashCan Dataset(垃圾检测数据集)