1. 引言
随着深度学习技术的不断发展,计算机视觉领域在许多实际应用中取得了突破性的进展。特别是在目标检测任务中,YOLO(You Only Look Once)系列算法,尤其是YOLOv5,凭借其高效、准确、实时性强等特点,成为了目标检测领域的主流方法之一。目标检测任务包括在图像或视频中识别出特定目标并标注其位置。在实际应用中,尤其是航拍场景中,如何准确检测小目标,尤其是机场航拍图像中的小目标,仍然是一个具有挑战性的问题。
机场航拍图像中通常包含许多小目标,如飞机、车辆、跑道标记等。由于目标的尺寸较小,且常常存在被其他物体遮挡、背景复杂等问题,导致目标检测任务变得更加困难。YOLOv5作为一款轻量级且高效的目标检测算法,适合处理此类小目标检测任务。本文将基于YOLOv5和Python的UI界面,构建一个机场航拍小目标检测系统,并结合数据集、训练过程和代码实现,帮助读者了解如何高效地进行小目标检测。
2. 项目背景与需求分析
2.1 机场航拍图像的目标检测
机场航拍图像通常包含多个复杂背景的小目标,这些小目标包括但不限于飞机、地面车辆、跑道标记和航站楼等。随着无人机技术的发展,机场航拍图像被广泛应用于机场管理、航班调度、安全监控等领域,因此,如何从航拍图像中准确地检测出小目标,并进行相应的标注和分类,成为了研究的重点。
目标检测系统的设计目标是:
- 准确性:在复杂背景中,准确地识别出目标,尤其是尺寸较小的目标。
- 实时性:考虑到机场场景的实时性需求