YOLOv8-CrowdHuman:基于YOLOv8的人头、人肩、人身检测系统实现

1. 📌 项目简介

本项目旨在通过使用先进的 YOLOv8目标检测模型,结合大规模行人检测数据集 CrowdHuman,实现对图像或视频中**人头(head)、人身(full body)、人肩(visible body)**三种区域的精准检测,并通过 PyQt5 UI界面提供可视化检测结果展示。

项目特点:

  • 多类检测:同时检测人头、人身、人肩三种区域
  • 模型轻量、检测速度快
  • UI界面友好,支持图像/视频/摄像头输入
  • 支持自定义数据训练与推理

2. 🧾 数据集介绍:CrowdHuman

CrowdHuman 是由旷视科技提出的一个高密度人群检测数据集,涵盖三种目标区域:

  • full_body: 人体全身的bounding box
  • visible_body: 可见部分的bounding box(通常是上半身或部分遮挡)
  • head: 人头的bounding box

2.1 数据集特点

  • 高密度:每张图像平均含有超过 20 个行人
  • 多样化:拍摄环境多样,包含城市、街道、夜间等
  • 三类标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值