1. 📌 项目简介
本项目旨在通过使用先进的 YOLOv8目标检测模型,结合大规模行人检测数据集 CrowdHuman,实现对图像或视频中**人头(head)、人身(full body)、人肩(visible body)**三种区域的精准检测,并通过 PyQt5 UI界面提供可视化检测结果展示。
项目特点:
- 多类检测:同时检测人头、人身、人肩三种区域
- 模型轻量、检测速度快
- UI界面友好,支持图像/视频/摄像头输入
- 支持自定义数据训练与推理
2. 🧾 数据集介绍:CrowdHuman
CrowdHuman 是由旷视科技提出的一个高密度人群检测数据集,涵盖三种目标区域:
full_body
: 人体全身的bounding boxvisible_body
: 可见部分的bounding box(通常是上半身或部分遮挡)head
: 人头的bounding box
2.1 数据集特点
- 高密度:每张图像平均含有超过 20 个行人
- 多样化:拍摄环境多样,包含城市、街道、夜间等
- 三类标