引言
随着深度学习技术的迅猛发展,计算机视觉已经取得了显著进展。目标检测是计算机视觉领域的核心任务之一,它不仅能够识别图像中的物体类别,还能精准地定位物体的位置。在许多实际应用中,如自动驾驶、安防监控、医疗图像分析等,目标检测技术都展现出了巨大的潜力。
在这篇博客中,我们将探索如何使用YOLOv8模型来对Flickr30k数据集进行目标检测与分类。Flickr30k是一个包含3万张图片的广泛使用的图像数据集,每张图片中包含多种物体和场景。我们的目标是通过YOLOv8对这些图像中的人物、物品等进行检测,并构建一个简单的用户界面(UI)来展示结果。
本文将详细介绍如何准备数据集、训练YOLOv8模型、优化模型性能,并构建UI界面,使得最终用户能够上传图片并实时查看目标检测结果。
目录
- 背景与应用领域
- Flickr30k数据集概述
- YOLOv8模型介绍
- 数据准备与预处理
- YOLOv8模型的训练与优化
- 实现UI界面
- 评估与结果展示
- 结论与展望