引言
在人群密集的场所中,进行有效的行人检测和目标识别对安全监控、公共安全管理等领域具有至关重要的意义。深度学习尤其是在计算机视觉领域的飞速发展,使得目标检测技术逐渐成为人群监控系统中的核心技术之一。而YOLOv5,作为一种高效的目标检测算法,凭借其速度与精度的优势,成为了众多实时目标检测任务中的首选。
CrowdHuman数据集是一个专注于人群检测的开源数据集,旨在提供高质量的标注数据,帮助研究者与开发者在密集人群场景中进行行人检测。本文将详细介绍如何基于YOLOv5在CrowdHuman数据集上进行训练,并展示如何实现一个简单的UI界面来进行实时行人检测。通过这篇博客,我们不仅能深入了解YOLOv5的训练过程,还能实现一个直观的实时检测系统。
1. CrowdHuman数据集简介
CrowdHuman数据集是一个专门用于行人检测的开源数据集,主要用于人群中行人的检测与定位。该数据集由多个复杂的场景组成,包括在不同视角、不同光照和不同背景条件下的人群图像。CrowdHuman数据集包含了多种人群密度的场景,能够有效地提升行人检测模型在复杂环境下的鲁棒性。
1.1 数据集类别
CrowdHuman数据集包含一个类别,即“行人(Pedestrian)”。所有图像中标注的目标都是行人,数据集的任务是对行人在不同场景中的位置进行检测与分类。虽然数据集只有一个类别,但由于人群的密集度和背景的复杂性,它为目标检测模型提出了很高的要求。
1.2 数据集下载
CrowdHuman数据