1. 引言
随着虚拟现实(VR)和增强现实(AR)技术的飞速发展,实时目标识别作为核心能力之一,成为提升用户交互体验的关键。实时准确地识别场景中的物体,不仅能增强虚拟场景的沉浸感,还能为用户提供更智能的交互支持。深度学习的兴起极大推动了目标检测技术的发展,YOLO(You Only Look Once)系列模型以其高效、准确的特性,成为实时检测的首选算法之一。本文将深入探讨如何利用最新的YOLOv8版本,结合合适的数据集及UI界面,实现VR/AR场景中的实时目标识别系统。
2. VR/AR场景中目标识别的应用与挑战
2.1 典型应用场景
- 虚拟物体交互:检测现实世界物体以实现虚拟物体的交互响应。
- 导航与定位:识别环境中标志物帮助导航。
- 增强信息展示:通过识别物体叠加相关信息。
- 安全监控:在VR培训中监控用户行为。
2.2 主要挑战
- 实时性要求高:低延迟的识别才能保证交互流畅。
- 多样复杂的场景:不同光照、遮挡、视角变化影响检测准确率。
- 计算资源限制:尤其在移动设备和头显上的推理效率。
- 数据集稀缺