1. 项目背景与需求分析
大型活动如体育赛事、音乐节、展览会等场合,人员密集,安全隐患多。安全人员的实时监控和管理是确保活动顺利进行的关键。传统依赖人工巡逻存在监控盲区、响应延迟、数据统计困难等问题。
因此,借助计算机视觉与深度学习技术,实现自动化、实时且高效的安全人员监控系统,成为当前研究和应用的热点。该系统主要功能包括:
- 实时检测和定位安全人员,辅助调度指挥。
- 统计安全人员分布与数量,为决策提供数据支持。
- 告警异常状态(如人员密度过大、区域无人监管等)。
- 提供用户友好的界面,实现操作便捷。
技术选型方面,YOLO系列目标检测模型因其高速度和较高精度,广泛用于实时场景。2023年推出的YOLOv8更是集成了最新的网络结构和训练优化策略,性能领先。
本文将以YOLOv8为核心,结合Python的PyQt5(或Streamlit)实现UI界面,构建完整的大型活动安全人员监控系统。
2. 数据集准备与标注
2.1 现有数据集参考
安全人员检测需要包含各种姿态、视角、光照、遮挡环境下的人员图像,且区分安全人员(穿制服)与普通群众。
可参考的数据集:
- CrowdHuman
包含复杂