车辆检测:基于YOLOv8的COCO、BDD100K与KITTI数据集训练与UI集成全流程指南

一、项目概述

车辆检测是计算机视觉中的一个重要任务,广泛应用于智能交通、自动驾驶、城市监控等领域。YOLOv8作为最新一代的目标检测模型,具有高精度和实时性的优势,适合部署在各种实际应用中。


二、数据集介绍与准备

1. COCO数据集

  • 简介:COCO(Common Objects in Context)是一个大规模的图像识别、分割和字幕数据集,包含80个对象类别,其中包括“car”、“bus”、“truck”、“motorcycle”等车辆类别。
  • 下载地址COCO官网
  • 数据格式:COCO使用JSON格式的标注文件,需转换为YOLO格式。GitHub

2. BDD100K数据集

  • 简介:BDD100K(Berkeley DeepDrive)是一个包含10万个驾驶视频帧的多任务数据集,涵盖多种天气、时间和场景条件,适合用于车辆检测任务。
  • 下载地址
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值