一、项目概述
车辆检测是计算机视觉中的一个重要任务,广泛应用于智能交通、自动驾驶、城市监控等领域。YOLOv8作为最新一代的目标检测模型,具有高精度和实时性的优势,适合部署在各种实际应用中。
二、数据集介绍与准备
1. COCO数据集
- 简介:COCO(Common Objects in Context)是一个大规模的图像识别、分割和字幕数据集,包含80个对象类别,其中包括“car”、“bus”、“truck”、“motorcycle”等车辆类别。
- 下载地址:COCO官网
- 数据格式:COCO使用JSON格式的标注文件,需转换为YOLO格式。GitHub
2. BDD100K数据集
- 简介:BDD100K(Berkeley DeepDrive)是一个包含10万个驾驶视频帧的多任务数据集,涵盖多种天气、时间和场景条件,适合用于车辆检测任务。
- 下载地址