基于YOLOv11深度学习的车牌识别系统设计与实现

1. 引言

车牌识别(Automatic Number Plate Recognition, ANPR)是智能交通系统中的核心技术之一,广泛应用于停车场管理、交通执法、高速公路收费等场景。本文将详细介绍如何使用深度学习技术构建一个高效的车牌识别系统,涵盖数据集介绍、模型选择(YOLOv11)、系统实现以及完整代码展示。

2. 车牌识别概述

车牌识别系统通常包括以下几个关键步骤:

  1. 车牌检测:定位图像中的车牌位置
  2. 车牌矫正:对倾斜车牌进行透视变换
  3. 字符分割:将车牌中的字符分离
  4. 字符识别:识别每个字符的内容

主要技术挑战包括:

  • 复杂背景干扰
  • 光照条件变化
  • 车牌倾斜和变形
  • 多车牌同时出现
  • 不同国家和地区的车牌格式差异

3. 数据集介绍

3.1 CCPD (Chinese City Parking Dataset)

CCPD是中国城市停车场车牌数据集,特点包括:

  • 超过300,000张车牌图像
  • 涵盖不同天气、光照条件
  • 多种角
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值