FightingDetector:基于YOLOv11的UFC打架检测系统

1. 背景与动机

在UFC等综合格斗赛事中,实时分析双方动作与交互具有重要价值:如自动判定打击动作、识别关键事件(如KO、摔倒),辅助裁判判罚、教练战术分析、赛事摘要生成等。随着深度学习的快速发展,实时检测与动作识别成为一大技术热点。

  • 目标:设计一套系统,能够识别视频中的“打击交互”(如拳击、踢击、肘击、摔投等),并进行实时可视化提示。

  • 挑战:UFC场景动作快速多变,背景复杂(灯光、摄像角度),小目标识别困难,对速度和延迟要求高。

  • 技术切入点

    1. 利用Ultralytics YOLOv11系列进行目标检测与分类;
    2. 构建轻量化、响应快速的实时检测管线;
    3. 集成跨平台Python界面(Web/UI)实现可视化。

本文将梳理完整系统从数据到部署的流程。


2. 相关数据集

2.1 UFC Fight Analyzer Dataset

  • 来源于Roboflow平台,包含标注UFC场景中“fighter”、“punch”等bounding boxes
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值