1. 背景与动机
在UFC等综合格斗赛事中,实时分析双方动作与交互具有重要价值:如自动判定打击动作、识别关键事件(如KO、摔倒),辅助裁判判罚、教练战术分析、赛事摘要生成等。随着深度学习的快速发展,实时检测与动作识别成为一大技术热点。
-
目标:设计一套系统,能够识别视频中的“打击交互”(如拳击、踢击、肘击、摔投等),并进行实时可视化提示。
-
挑战:UFC场景动作快速多变,背景复杂(灯光、摄像角度),小目标识别困难,对速度和延迟要求高。
-
技术切入点:
- 利用Ultralytics YOLOv11系列进行目标检测与分类;
- 构建轻量化、响应快速的实时检测管线;
- 集成跨平台Python界面(Web/UI)实现可视化。
本文将梳理完整系统从数据到部署的流程。
2. 相关数据集
2.1 UFC Fight Analyzer Dataset
- 来源于Roboflow平台,包含标注UFC场景中“fighter”、“punch”等bounding boxes