1. 引言
雷达目标识别是现代自动驾驶系统、军事防御系统和空中交通管制中的关键技术。随着深度学习的发展,基于卷积神经网络的目标检测算法在雷达数据处理领域展现出巨大潜力。本文将详细介绍如何使用改进的YOLOv11算法在RADDet数据集上实现雷达目标识别,并构建完整的用户界面系统。
雷达回波(radar blip)是雷达系统检测到目标后产生的原始数据表示,通常包含目标的距离、方位、高度和速度等信息。传统的雷达信号处理方法依赖于手工设计的特征提取器,而深度学习能够自动学习这些特征,大大提高了识别准确率。
2. 相关工作
2.1 雷达目标检测数据集
在雷达目标检测领域,公开可用的数据集相对较少。以下是几个重要的雷达数据集:
- RADDet:专注于汽车雷达的3D目标检测,包含多种天气条件下的数据
- RADIal:提供雷达、摄像头和激光雷达的多模态数据
- CARRADA:专注于汽车雷达的Range-Azimuth-Doppler分析
- Oxford Radar RobotCar:包含高分辨率雷达数据的长序列
本系统选择RADDet作为基础数据集,因其专门为自动驾驶场景设计且数据质量较高。
2.2 目标检测算法演进
YOLO系列算法因其速度和精度的平衡而广受欢迎。从YOL