1. 引言
1.1 垃圾分类的重要性
随着城市化进程加快和人口增长,全球垃圾产量呈指数级上升。据统计,中国每年产生近10亿吨城市固体废物,且这一数字以每年5-8%的速度增长。垃圾分类与回收已成为缓解"垃圾围城"、实现资源循环利用的关键举措。通过有效的垃圾分类,可回收物如纸张、塑料、金属等的回收率可提升30%以上,大大减少填埋和焚烧压力。
1.2 计算机视觉在垃圾分类中的应用
传统垃圾分类主要依赖人工分拣或简单的传感器检测,存在效率低、成本高、准确率不足等问题。近年来,随着深度学习技术的发展,基于计算机视觉的智能垃圾分类系统展现出巨大潜力。其中,YOLO(You Only Look Once)系列算法因其出色的实时检测性能,特别适合部署在实际垃圾分类场景中。
本文将详细介绍如何使用最新的YOLOv8算法构建一个完整的垃圾分类系统,包括数据集准备、模型训练、性能优化以及用户界面开发。我们还将提供完整的代码实现,帮助读者快速复现和应用该系统。
2. 数据集准备与处理
2.1 垃圾分类数据集介绍
一个高质量的垃圾分类数据集是构建有效检测模型的基础。以下是几个常用的公开垃圾分类数据集:
- TrashNet:包含6类垃圾(玻璃、纸张、纸板、塑料、金属、其他)的2527张图像,每类约400-500张。
- TACO (Trash Annotations in Cont