一、项目介绍
YOLOv10七种车辆类型检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类七种不同类型的车辆。该系统能够自动识别车辆并将其分类为:tiny-car(小型汽车)、mid-car(中型汽车)、big-car(大型汽车)、small-truck(小型卡车)、big-truck(大型卡车)、oil-truck(油罐车) 和 special-car(特种车辆)。通过该系统,用户可以实时监控道路上的车辆类型分布,适用于交通管理、智能安防、物流监控等场景,准确率99.1%。
该系统在智能交通、安防监控、物流管理等领域具有广泛的应用前景,能够为用户提供高效、准确的车辆类型检测解决方案。
目录
基于深度学习YOLOv10的车辆类型检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili
基于深度学习YOLOv10的车辆类型检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
二、项目功能展示
系统功能
✅ 图片检测:可对图片进行检测,返回检测框及类别信息。
✅ 视频检测:支持视频文件输入,检测视频中每一帧的情况。
✅ 摄像头实时检测:连接USB 摄像头,实现实时监测。
✅参数实时调节(置信度和IoU阈值)
-
图片检测
该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。批量图片检测
用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理,并返回每张图像的目标检测结果,适用于需要大规模处理图像数据的应用场景。
视频检测
视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。
-
摄像头实时检测
该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。
核心特点:
- 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
- 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
- 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。
三、数据集介绍
数据集名称: 七种车辆类型检测数据集
数据集类别: 7类
类别名称:
['tiny-car', 'mid-car', 'big-car', 'small-truck', 'big-truck', 'oil-truck', 'special-car']
数据集划分:
-
训练集: 1488 张图像
训练集用于训练YOLOv10模型,使其能够学习并识别七种车辆类型的特征。训练集的图像涵盖了不同光照条件、背景环境、车辆姿态以及交通场景,以确保模型的泛化能力。 -
验证集: 507 张图像
验证集用于在训练过程中评估模型的性能,帮助调整超参数和防止过拟合。验证集的图像与训练集类似,但独立于训练集,确保模型在未见过的数据上也能表现良好。 -
测试集: 31 张图像
测试集用于最终评估模型的性能,反映模型在实际应用中的表现。测试集的图像是完全独立的,确保评估结果的客观性和准确性。
数据集特点:
-
高质量标注: 每张图像都经过精确的标注,标注信息包括车辆的类型和边界框位置,确保模型能够准确学习目标特征。
-
多样性: 数据集中的图像涵盖了不同光照条件(如白天、夜晚)、背景环境(如城市道路、高速公路)、车辆姿态(如正面、侧面)以及交通场景(如拥堵、畅通),确保模型能够适应各种实际场景。
-
类别丰富: 数据集包含七种车辆类型,涵盖了从普通汽车到特种车辆的各种类型,能够满足多样化的检测需求。
应用场景:
-
智能交通管理:
实时监控道路上的车辆类型分布,帮助交通管理部门优化交通流量控制、道路规划和安全监控。 -
安防监控:
在重要场所(如机场、港口、工业园区)中,系统可以用于检测特定类型的车辆,提升安防监控能力。 -
物流监控:
在物流运输中,系统可以用于识别和追踪卡车、油罐车等车辆,优化物流管理流程。
技术优势
-
高精度检测: 基于YOLOv10目标检测算法,能够实现高精度的车辆类型检测。
-
实时性: 系统支持实时检测,能够快速处理图像并输出检测结果。
-
鲁棒性: 模型经过多样化数据训练,能够适应不同光照条件、背景环境和车辆姿态。
-
易用性: 系统可部署于多种硬件平台(如嵌入式设备、监控摄像头、服务器等),满足不同场景的需求。
数据集配置文件data.yaml
train: .\datasets\images\train
val: .\datasets\images\val
test: .\datasets\images\test
# Classes
nc: 7
names: ['tiny-car', 'mid-car', 'big-car', 'small-truck', 'big-truck', 'oil-truck', 'special-car']
数据集制作流程
-
标注数据:使用标注工具(如LabelImg、CVAT等)对图像中的目标进行标注。每个目标需要标出边界框,并且标注类别。
-
转换格式:将标注的数据转换为YOLO格式。YOLO标注格式为每行:
<object-class> <x_center> <y_center> <width> <height>
,这些坐标是相对于图像尺寸的比例。 -
分割数据集:将数据集分为训练集、验证集和测试集,通常的比例是80%训练集、10%验证集和10%测试集。
-
准备标签文件:为每张图片生成一个对应的标签文件,确保标签文件与图片的命名一致。
-
调整图像尺寸:根据YOLO网络要求,统一调整所有图像的尺寸(如416x416或608x608)。
四、项目环境配置
创建虚拟环境
首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。
终端输入
conda create -n yolov10 python==3.9
激活虚拟环境
conda activate yolov10
安装cpu版本pytorch
pip install torch torchvision torchaudio
pycharm中配置anaconda
安装所需要库
pip install -r requirements.txt
五、模型训练
训练代码
from ultralytics import YOLOv10
model_path = 'yolov10s.pt'
data_path = 'datasets/data.yaml'
if __name__ == '__main__':
model = YOLOv10(model_path)
results = model.train(data=data_path,
epochs=500,
batch=64,
device='0',
workers=0,
project='runs/detect',
name='exp',
)
根据实际情况更换模型 yolov10n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 yolov10s.yaml (small):小模型,适合实时任务。 yolov10m.yaml (medium):中等大小模型,兼顾速度和精度。 yolov10b.yaml (base):基本版模型,适合大部分应用场景。 yolov10l.yaml (large):大型模型,适合对精度要求高的任务。
--batch 64
:每批次64张图像。--epochs 500
:训练500轮。--datasets/data.yaml
:数据集配置文件。--weights yolov10s.pt
:初始化模型权重,yolov10s.pt
是预训练的轻量级YOLO模型。
训练结果
六、核心代码
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog
from PyQt5.QtCore import QThread, pyqtSignal
from ultralytics import YOLOv10
from UiMain import UiMainWindow
import time
import os
class DetectionThread(QThread):
frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果
finished_signal = pyqtSignal() # 线程完成信号
def __init__(self, model, source, conf, iou, parent=None):
super().__init__(parent)
self.model = model
self.source = source
self.conf = conf
self.iou = iou
self.running = True
def run(self):
try:
if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')): # 视频或摄像头
cap = cv2.VideoCapture(self.source)
while self.running and cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 保存原始帧
original_frame = frame.copy()
# 检测
results = self.model(frame, conf=self.conf, iou=self.iou)
annotated_frame = results[0].plot()
# 提取检测结果
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls)
class_name = self.model.names[class_id]
confidence = float(box.conf)
x, y, w, h = box.xywh[0].tolist()
detections.append((class_name, confidence, x, y))
# 发送信号
self.frame_received.emit(
cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB),
cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB),
detections
)
# 控制帧率
time.sleep(0.03) # 约30fps
cap.release()
else: # 图片
frame = cv2.imread(self.source)
if frame is not None:
original_frame = frame.copy()
results = self.model(frame, conf=self.conf, iou=self.iou)
annotated_frame = results[0].plot()
# 提取检测结果
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls)
class_name = self.model.names[class_id]
confidence = float(box.conf)
x, y, w, h = box.xywh[0].tolist()
detections.append((class_name, confidence, x, y))
self.frame_received.emit(
cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB),
cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB),
detections
)
except Exception as e:
print(f"Detection error: {e}")
finally:
self.finished_signal.emit()
def stop(self):
self.running = False
class MainWindow(UiMainWindow):
def __init__(self):
super().__init__()
# 初始化模型
self.model = None
self.detection_thread = None
self.current_image = None
self.current_result = None
self.video_writer = None
self.is_camera_running = False
self.is_video_running = False
self.last_detection_result = None # 新增:保存最后一次检测结果
# 连接按钮信号
self.image_btn.clicked.connect(self.detect_image)
self.video_btn.clicked.connect(self.detect_video)
self.camera_btn.clicked.connect(self.detect_camera)
self.stop_btn.clicked.connect(self.stop_detection)
self.save_btn.clicked.connect(self.save_result)
# 初始化模型
self.load_model()
def load_model(self):
try:
model_name = self.model_combo.currentText()
self.model = YOLOv10(f"{model_name}.pt") # 自动下载或加载本地模型
self.update_status(f"模型 {model_name} 加载成功")
except Exception as e:
QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}")
self.update_status("模型加载失败")
def detect_image(self):
if self.detection_thread and self.detection_thread.isRunning():
QMessageBox.warning(self, "警告", "请先停止当前检测任务")
return
file_path, _ = QFileDialog.getOpenFileName(
self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)")
if file_path:
self.clear_results()
self.current_image = cv2.imread(file_path)
self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB)
self.display_image(self.original_image_label, self.current_image)
# 创建检测线程
conf = self.confidence_spinbox.value()
iou = self.iou_spinbox.value()
self.detection_thread = DetectionThread(self.model, file_path, conf, iou)
self.detection_thread.frame_received.connect(self.on_frame_received)
self.detection_thread.finished_signal.connect(self.on_detection_finished)
self.detection_thread.start()
self.update_status(f"正在检测图片: {os.path.basename(file_path)}")
def detect_video(self):
if self.detection_thread and self.detection_thread.isRunning():
QMessageBox.warning(self, "警告", "请先停止当前检测任务")
return
file_path, _ = QFileDialog.getOpenFileName(
self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)")
if file_path:
self.clear_results()
self.is_video_running = True
# 初始化视频写入器
cap = cv2.VideoCapture(file_path)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
# 创建保存路径
save_dir = "results"
os.makedirs(save_dir, exist_ok=True)
timestamp = time.strftime("%Y%m%d_%H%M%S")
save_path = os.path.join(save_dir, f"result_{timestamp}.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height))
# 创建检测线程
conf = self.confidence_spinbox.value()
iou = self.iou_spinbox.value()
self.detection_thread = DetectionThread(self.model, file_path, conf, iou)
self.detection_thread.frame_received.connect(self.on_frame_received)
self.detection_thread.finished_signal.connect(self.on_detection_finished)
self.detection_thread.start()
self.update_status(f"正在检测视频: {os.path.basename(file_path)}")
def detect_camera(self):
if self.detection_thread and self.detection_thread.isRunning():
QMessageBox.warning(self, "警告", "请先停止当前检测任务")
return
self.clear_results()
self.is_camera_running = True
# 创建检测线程 (默认使用摄像头0)
conf = self.confidence_spinbox.value()
iou = self.iou_spinbox.value()
self.detection_thread = DetectionThread(self.model, 0, conf, iou)
self.detection_thread.frame_received.connect(self.on_frame_received)
self.detection_thread.finished_signal.connect(self.on_detection_finished)
self.detection_thread.start()
self.update_status("正在从摄像头检测...")
def stop_detection(self):
if self.detection_thread and self.detection_thread.isRunning():
self.detection_thread.stop()
self.detection_thread.quit()
self.detection_thread.wait()
if self.video_writer:
self.video_writer.release()
self.video_writer = None
self.is_camera_running = False
self.is_video_running = False
self.update_status("检测已停止")
def on_frame_received(self, original_frame, result_frame, detections):
# 更新原始图像和结果图像
self.display_image(self.original_image_label, original_frame)
self.display_image(self.result_image_label, result_frame)
# 保存当前结果帧用于后续保存
self.last_detection_result = result_frame # 新增:保存检测结果
# 更新表格
self.clear_results()
for class_name, confidence, x, y in detections:
self.add_detection_result(class_name, confidence, x, y)
# 保存视频帧
if self.video_writer:
self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR))
def on_detection_finished(self):
if self.video_writer:
self.video_writer.release()
self.video_writer = None
self.update_status("视频检测完成,结果已保存")
elif self.is_camera_running:
self.update_status("摄像头检测已停止")
else:
self.update_status("图片检测完成")
def save_result(self):
if not hasattr(self, 'last_detection_result') or self.last_detection_result is None:
QMessageBox.warning(self, "警告", "没有可保存的检测结果")
return
save_dir = "results"
os.makedirs(save_dir, exist_ok=True)
timestamp = time.strftime("%Y%m%d_%H%M%S")
if self.is_camera_running or self.is_video_running:
# 保存当前帧为图片
save_path = os.path.join(save_dir, f"snapshot_{timestamp}.jpg")
cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR))
self.update_status(f"截图已保存: {save_path}")
else:
# 保存图片检测结果
save_path = os.path.join(save_dir, f"result_{timestamp}.jpg")
cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR))
self.update_status(f"检测结果已保存: {save_path}")
def closeEvent(self, event):
self.stop_detection()
event.accept()
if __name__ == "__main__":
app = QApplication(sys.argv)
# 设置应用程序样式
app.setStyle("Fusion")
# 创建并显示主窗口
window = MainWindow()
window.show()
sys.exit(app.exec_())
七、项目源码
基于深度学习YOLOv10的车辆类型检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili
基于深度学习YOLOv10的车辆类型检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)