AutoDriveYOLO:基于YOLOv5的自动驾驶目标检测系统构建

1️⃣ 项目背景与目标

在自动驾驶领域,环境感知是车辆实现决策规划的基础。其中,目标检测技术可以帮助自动驾驶车辆实时识别道路上的行人、车辆、交通标志、红绿灯等关键目标。

本项目旨在构建一个完整的 自动驾驶目标检测系统 AutoDriveYOLO,通过:

  • 使用 YOLOv5 进行高效目标检测;
  • 构建 图形化用户界面(UI) 实现视频/图片检测;
  • 使用开源真实道路场景数据集进行训练;
  • 实现完整端到端部署能力。

2️⃣ 技术选型

<
模块 技术
深度学习框架 PyTorch
目标检测模型 YOLOv5
UI界面开发 PyQt5
数据处理 OpenCV, Pandas, NumPy
系统环境 Python 3.8+, CUDA 11+, PyTorch 1.10+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值