1. 引言
水下目标检测是海洋探索、水下机器人导航、渔业资源调查等领域的关键技术。由于水下环境的特殊性,如光线衰减、散射、浑浊度高等问题,传统计算机视觉方法在水下环境中的表现往往不尽如人意。近年来,深度学习技术的快速发展为水下目标检测提供了新的解决方案。
本文将详细介绍基于YOLOv5的水下目标检测系统的完整实现过程,包括:
- 系统架构设计
- 数据集准备与处理
- YOLOv5模型训练与优化
- PyQt5界面开发
- 系统集成与测试
本系统采用PyTorch框架实现YOLOv5算法,使用PyQt5开发用户界面,能够实现实时水下目标检测、结果可视化及数据导出功能。
2. 系统总体设计
2.1 系统架构
系统整体架构分为三个主要模块:
- 数据预处理模块:负责图像增强、标注转换等操作
- 目标检测模块:基于YOLOv5的核心检测功能
- 用户界面模块:提供交互式操作界面
text
复制
下载
┌─────────────────────────────────────────────────┐
│ 水下目标检测系统 │
├───────────