基于YOLOv5的水下目标检测系统设计与实现

1. 引言

水下目标检测是海洋探索、水下机器人导航、渔业资源调查等领域的关键技术。由于水下环境的特殊性,如光线衰减、散射、浑浊度高等问题,传统计算机视觉方法在水下环境中的表现往往不尽如人意。近年来,深度学习技术的快速发展为水下目标检测提供了新的解决方案。

本文将详细介绍基于YOLOv5的水下目标检测系统的完整实现过程,包括:

  1. 系统架构设计
  2. 数据集准备与处理
  3. YOLOv5模型训练与优化
  4. PyQt5界面开发
  5. 系统集成与测试

本系统采用PyTorch框架实现YOLOv5算法,使用PyQt5开发用户界面,能够实现实时水下目标检测、结果可视化及数据导出功能。

2. 系统总体设计

2.1 系统架构

系统整体架构分为三个主要模块:

  1. 数据预处理模块:负责图像增强、标注转换等操作
  2. 目标检测模块:基于YOLOv5的核心检测功能
  3. 用户界面模块:提供交互式操作界面

text

复制

下载

┌─────────────────────────────────────────────────┐
│              水下目标检测系统                  │
├───────────
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值