摘要
本文详细介绍了基于YOLOv8深度学习框架的智能口罩识别系统的设计与实现过程。系统采用最新的YOLOv8目标检测算法,结合PyQt5开发的用户界面,实现了高效、准确的口罩佩戴检测功能。文章从算法原理、数据集准备、模型训练、系统实现到性能评估等多个方面进行了全面阐述,并提供了完整的代码实现。实验结果表明,该系统在自建数据集上达到了95.3%的mAP,能够实时准确地检测口罩佩戴情况,具有较高的实用价值。
关键词:YOLOv8;口罩识别;目标检测;深度学习;PyQt5
1. 引言
1.1 研究背景
近年来,全球公共卫生事件频发,佩戴口罩成为预防呼吸道传染病传播的有效手段之一。在公共场所,如医院、商场、车站等,实时监测人员口罩佩戴情况对于疫情防控具有重要意义。传统的人工监测方式效率低下且成本高昂,而基于计算机视觉的自动口罩识别系统能够提供高效、准确的解决方案。
1.2 研究现状
目标检测算法在近年来取得了显著进展,从早期的R-CNN系列到YOLO系列,检测速度和精度不断提升。YOLOv8作为Ultralytics公司于2023年发布的最新版本,在保持YOLO系列实时性的同时,进一步提高了检测精度,特别适合口罩识别这类实时性要求较高的应用场景。
1.3 本文贡献
本文的主要贡献包括:
- 设计并实现了一个完整的基于YOLOv8的口罩识别系统
- 收集并标注了一个包