基于YOLOv8的智能口罩识别系统设计与实现

摘要

本文详细介绍了基于YOLOv8深度学习框架的智能口罩识别系统的设计与实现过程。系统采用最新的YOLOv8目标检测算法,结合PyQt5开发的用户界面,实现了高效、准确的口罩佩戴检测功能。文章从算法原理、数据集准备、模型训练、系统实现到性能评估等多个方面进行了全面阐述,并提供了完整的代码实现。实验结果表明,该系统在自建数据集上达到了95.3%的mAP,能够实时准确地检测口罩佩戴情况,具有较高的实用价值。

关键词:YOLOv8;口罩识别;目标检测;深度学习;PyQt5

1. 引言

1.1 研究背景

近年来,全球公共卫生事件频发,佩戴口罩成为预防呼吸道传染病传播的有效手段之一。在公共场所,如医院、商场、车站等,实时监测人员口罩佩戴情况对于疫情防控具有重要意义。传统的人工监测方式效率低下且成本高昂,而基于计算机视觉的自动口罩识别系统能够提供高效、准确的解决方案。

1.2 研究现状

目标检测算法在近年来取得了显著进展,从早期的R-CNN系列到YOLO系列,检测速度和精度不断提升。YOLOv8作为Ultralytics公司于2023年发布的最新版本,在保持YOLO系列实时性的同时,进一步提高了检测精度,特别适合口罩识别这类实时性要求较高的应用场景。

1.3 本文贡献

本文的主要贡献包括:

  1. 设计并实现了一个完整的基于YOLOv8的口罩识别系统
  2. 收集并标注了一个包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值