专栏内容(赛前预售价99,比赛期间199): 2025数学建模国赛期间会发布思路、代码,赛前会发布常用算法模型使用案例,内容可能达不到所有人预期,请勿盲目订阅。
35套模型算法(常用使用案例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群算法、蒙特卡洛模拟、聚类模型、线性规划、粒子群算法、神经网络、相关系数、灰色预测、灰色关联分析、模糊综合评价、模拟退火、时间序列ARMA、方差分析支持向量机、插值、排队论、拟合模型、微分方程、层次分析法、小波分析、多元回归、图论floyd算法、图论Dijkstra模型、因子分析、动态规划、博弈论、决策树、典型相关分析、元胞自动机、主成分分析、TOPSIS法。
引言:为什么选择距离判别法?
在数学建模竞赛中,我们经常会遇到一类核心问题:分类(Classification) 。即根据已知样本的多种特征(变量),构建一个模型,用于预测新样本的类别归属。例如:
- 国赛/C题:根据葡萄酒的理化指标(酸度、酒精含量、色素等)判别其产地或等级。
- 美赛/MCM-ICM:根据卫星遥感数据(光谱波段、纹理特征)对土地类型(森林、水域、城市)进行分类。
- 用户画像:根据用户的消费行为、浏览历史等数据,判断用户是高价值客户还是普通客户。
面对这类问题,我们的武器库里有众多模型:逻辑回归(Logistic Reg