专栏内容(赛前预售价99,比赛期间199): 2025数学建模国赛期间会发布思路、代码,赛前会发布常用算法模型使用案例,内容可能达不到所有人预期,请勿盲目订阅。
35套模型算法(常用使用案例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群算法、蒙特卡洛模拟、聚类模型、线性规划、粒子群算法、神经网络、相关系数、灰色预测、灰色关联分析、模糊综合评价、模拟退火、时间序列ARMA、方差分析支持向量机、插值、排队论、拟合模型、微分方程、层次分析法、小波分析、多元回归、图论floyd算法、图论Dijkstra模型、因子分析、动态规划、博弈论、决策树、典型相关分析、元胞自动机、主成分分析、TOPSIS法。
摘要
在数学建模竞赛中,我们面临的常常是来自现实世界的复杂系统:交织的交通网络、瞬息万变的信息流、错综复杂的社会关系、相互依赖的基础设施。如何将这些纷繁复杂的系统抽象化、数字化,并从中提取有价值的信息,是制胜的关键。图论,作为研究事物之间关系的数学分支,为我们提供了完美的建模语言。而图论遍历算法,则是我们探索这幅抽象“地图”、挖掘其深层信息的最基本也是最强大的工具。本文将深入探讨深度优先搜索(DFS)和广度优先搜索(BFS)的核心原理,并通过几个详尽的数学建模案例,展示如何利用这些算法解决实际问题,并提供可直接复用的Python代码。
一、引言:为什么图论遍历在数学建模中不可或缺?
数学建模的本质是将实际问题转化为数学问题,并求解。绝大多数问题都包含“关系”和“