
2025数学建模国赛
文章平均质量分 92
2025数学建模国赛,会持续更新内容,请勿盲目订阅
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
YOLO实战营
人工智能国赛冠军/数模国赛一等奖/蓝桥杯全国TOP1,深耕深度学习与YOLO目标检测领域,曾获Kaggle图像检测全球Top 1%、天池AI视觉大赛技术突破奖、全国AI+安防算法赛金奖,主导开源项目《YOLO工业级实战手册》获GitHub趋势榜推荐。
专注输出:从零复现YOLOv5/v8/v10算法、模型轻量化落地、目标检测全流程调优,分享竞赛突围技巧与论文复现源码。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
备战2025数学建模国赛(算法87):最小生成树算法在数学建模竞赛中的应用:Prim与Kruskal算法详解
在一个带权无向连通图中,生成树是包含图中所有顶点的树,即一个无环连通子图。最小生成树则是所有生成树中边权值之和最小的那棵树。包含原图所有顶点是连通无环图具有最小的总权值。原创 2025-08-23 23:09:03 · 26 阅读 · 0 评论 -
备战2025数学建模国赛(算法83):元胞自动机:数学建模竞赛中的“微观世界”模拟利器
在数学建模竞赛中,我们常常会遇到一些涉及时间演化、空间交互和局部规则的复杂系统。这类问题用传统的微分方程有时难以刻画,或者求解异常复杂。此时,元胞自动机 作为一种强大的离散动态系统建模框架,就能大放异彩。它通过简单的局部规则,涌现出复杂的全局行为,非常适合模拟交通流、疾病传播、森林火灾、谣言扩散、生物种群竞争等场景。本篇博客将深入探讨元胞自动机的核心概念,并提供两个完整的数学建模案例及Python代码实现,助你在竞赛中游刃有余。元胞自动机(Cellular Automaton, CA)不是一个单一的算法,而原创 2025-08-23 23:06:35 · 75 阅读 · 0 评论 -
备战2025数学建模国赛(算法84):偏微分方程模型在数学建模竞赛中的应用与实践
将连续区域离散化,用差商代替微商。原创 2025-08-23 23:07:22 · 19 阅读 · 0 评论 -
备战2025数学建模国赛(算法78):假设检验
原假设(H₀): 被告是无罪的。(默认状态,除非有强有力证据否则不应被推翻)备择假设(H₁): 被告是有罪的。(我们希望证明的结论)法官和陪审团不会去“证明”被告无罪,而是会检视控方提供的证据,判断这些证据是否足够强以至于可以拒绝“被告无罪”这个假设。如果证据不够强(例如,只是巧合或道听途说),那么即使被告可能并非完全清白,基于“疑罪从无”的原则,我们仍然不能拒绝原假设。建立假设: 先假设一个“现状”或“无效”的原假设(H₀)。同时设立一个对立的备择假设(H₁)。收集证据: 通过样本数据计算一个。原创 2025-08-23 23:04:07 · 14 阅读 · 0 评论 -
备战2025数学建模国赛(算法76):方差分析(ANOVA)在数学建模竞赛中的全方位应用指南
方差分析(Analysis of Variance, ANOVA)是数理统计学中用于检验两个及以上样本均值差异显著性的核心方法,也是数学建模竞赛中处理多组比较问题的利器。本文旨在为数学建模参赛者提供一份ANOVA的全面应用指南。内容将从ANOVA的思想起源与核心概念讲起,深入剖析其基本假设、数学模型及计算原理。重点将放在单因素方差分析(One-way ANOVA)和双因素方差分析(Two-way ANOVA)的实战应用上,包括无交互作用和有交互作用两种情形。原创 2025-08-23 23:03:03 · 131 阅读 · 0 评论 -
备战2025数学建模国赛(算法88):常微分方程(ODE)模型:数学建模竞赛中的动态系统利器
易感者,可能被感染的健康人群。感染者,已经患病且具有传染性的人群。康复者或移除者,已经康复并获得免疫力(或死亡)的人群,不再参与疾病传播。β (感染率):一个感染者单位时间内有效接触并感染易感者的概率。γ (康复率):单位时间内感染者康复(或移除)的比例。平均感染周期为1/γ天。t (时间),单位:天。模型选择:SIR是起点。SEIR:增加潜伏期(Exposed)人群。SIRS:免疫力会逐渐消失,康复者会再次变为易感者。考虑人口出生死亡、迁移。考虑年龄结构、空间扩散。原创 2025-08-23 23:09:44 · 24 阅读 · 0 评论 -
备战2025数学建模国赛(算法85):网络流模型在数学建模竞赛中的应用与实践
网络流模型是数学建模竞赛中极其强大的工具,能够解决多种类型的优化问题。通过掌握基本理论、算法实现和实际应用技巧,参赛队伍可以在竞赛中有效地使用这一工具。熟练掌握最大流最小割定理及其应用根据问题规模选择合适的算法灵活地将实际问题转化为网络流模型重视结果分析和可视化,增强论文的说服力。原创 2025-08-23 23:07:54 · 17 阅读 · 0 评论 -
备战2025数学建模国赛(算法86):图论遍历算法:解锁复杂系统的钥匙与数学建模实战
在数学建模竞赛中,我们面临的常常是来自现实世界的复杂系统:交织的交通网络、瞬息万变的信息流、错综复杂的社会关系、相互依赖的基础设施。如何将这些纷繁复杂的系统抽象化、数字化,并从中提取有价值的信息,是制胜的关键。图论,作为研究事物之间关系的数学分支,为我们提供了完美的建模语言。而图论遍历算法,则是我们探索这幅抽象“地图”、挖掘其深层信息的最基本也是最强大的工具。原创 2025-08-23 23:08:26 · 12 阅读 · 0 评论 -
备战2025数学建模国赛(算法80):图像处理算法
图像处理为数学建模解决现实问题提供了一个强大的感知维度。掌握滤波、二值化、边缘检测、形态学操作和轮廓分析这一套“组合拳”,足以让你应对竞赛中大多数基于图像的初级和中级问题。而对于更复杂的挑战,如物体识别、语义分割,则可以在此基础上,进一步了解特征描述子(如SIFT、HOG)乃至深度学习模型。记住,在竞赛中,没有完美的算法,只有最适合当前问题和数据的策略。灵活调整参数(如滤波核大小、Canny算法的阈值、形态学操作的次数),并结合具体的数学模型,才是成功的关键。原创 2025-08-23 23:05:33 · 71 阅读 · 0 评论 -
备战2025数学建模国赛(算法77):最短路径算法在数学建模竞赛中的应用:Dijkstra与Floyd算法详解
最短路径问题是数学建模竞赛中的经典问题类型,广泛应用于交通运输、网络路由、物流配送等领域。本文将深入探讨两种核心的最短路径算法——Dijkstra算法和Floyd算法,分析它们的原理、适用场景及实现方式,并提供完整的代码实现和数学建模竞赛中的应用案例。本文详细介绍了Dijkstra和Floyd两种最短路径算法的原理、实现及应用。这两种算法在数学建模竞赛中具有广泛的应用价值,能够解决许多实际优化问题。原创 2025-08-23 23:03:37 · 96 阅读 · 0 评论 -
备战2025数学建模国赛(算法79):小波分析:数学建模竞赛中处理非平稳信号的“瑞士军刀”——理论与实战全解析
小波,顾名思义,就是“小的波形”。“小” (Wave): 具有紧支撑性(或快速衰减性),即在有限区间外迅速趋于零。这保证了它的局部化能力。“波” (Let): 具有波动性,即它的均值为零(∫−∞∞ψtdt0∫−∞∞ψtdt0这意味着它像正弦波一样有正有负,可以用于探测信号的细节变化。一个典型的小波函数是墨西哥帽小波(Mexican Hat Wavelet),它是高斯函数的二阶导数。原创 2025-08-23 23:05:03 · 13 阅读 · 0 评论 -
备战2025数学建模国赛(算法81):蒙特卡罗模拟
假设有一个边长为2的正方形,其内切一个半径为1的圆。原创 2025-08-23 23:06:05 · 16 阅读 · 0 评论 -
备战2025数学建模国赛(算法75):判别分析
判别分析是一个强大而高效的分类工具包,尤其适用于中小规模、特征可能相关的数据集。LDA和QDA为其提供了线性和非线性的解决方案。在数学建模竞赛中,掌握判别分析并能熟练地使用Python实现整个流程——从数据探索、预处理、模型训练评估到最终应用——将为解决分类类赛题提供一个可靠的基础方案。原创 2025-08-22 23:15:30 · 352 阅读 · 0 评论 -
备战2025数学建模国赛(算法74):数学建模竞赛利器:距离判别法(Distance Discriminant Analysis)全面解析与实战应用
总体(Population):研究对象的全体。设有kkk个总体G1G2GkG1G2...Gk。样本(Sample):从总体中抽取的若干个个体。每个样本是一个ppp维向量xx1x2xpTxx1x2...xpT,代表ppp个特征。距离:衡量两个样本点或样本与总体之间接近程度的度量。原创 2025-08-22 23:14:51 · 136 阅读 · 0 评论 -
备战2025数学建模国赛(算法73):系统聚类(层次聚类)在数学建模竞赛中的应用与实现
系统聚类(Hierarchical Clustering),又称层次聚类,是一种通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树的聚类算法。这种方法不需要预先指定聚类数量,而是通过树状结构(dendrogram)展示数据点之间的层次关系,让研究者能够根据需求选择适当的聚类划分。系统聚类作为一种强大的无监督学习方法,在数学建模竞赛中具有广泛的应用价值。系统聚类能够有效地发现数据中存在的自然分组,不需要预先指定聚类数量。通过树状图和轮廓系数分析,可以确定最优的聚类数量。原创 2025-08-22 23:14:07 · 276 阅读 · 0 评论 -
备战2025数学建模国赛(算法72):主成分分析(PCA)与因子分析在数学建模竞赛中的应用
引言在数学建模竞赛中,我们常常面临高维数据集,这些数据集包含大量变量,不仅增加了计算复杂度,也可能导致"维度灾难"问题。主成分分析(PCA)和因子分析是两种经典的降维技术,能够帮助我们从复杂数据中提取关键信息,简化模型结构,同时保持数据的主要特征。本文将深入探讨这两种方法,并提供在数学建模竞赛中的实际应用案例和代码实现。一、主成分分析(PCA)原理与实现1.1 PCA基本概念主成分分析是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量称为主成分。原创 2025-08-22 23:13:13 · 107 阅读 · 0 评论 -
备战2025数学建模国赛(算法71):聚类分析
在数学建模竞赛中,我们常常会遇到海量的、未经标注的数据。如何从这些数据中找出内在的规律和结构,将相似的对象归为一类,从而为后续的深入分析和决策提供依据,是一项至关重要的任务。聚类分析(Cluster Analysis),作为无监督学习的核心技术,正是解决这类问题的利器。本文将深入探讨聚类分析的核心思想、常用算法(以K-Means和DBSCAN为重点),并通过一个完整的数学建模案例——“基于城市综合发展水平的聚类分析”原创 2025-08-22 23:12:37 · 280 阅读 · 0 评论 -
备战2025数学建模国赛(算法69):K-Means聚类
目标:根据用户的购物行为,将其划分为不同的群体。数据字段(模拟)user_id: 用户ID: 用户年收入(千美元)(模拟数据,便于可视化): 平台根据用户行为计算出的消费得分(1-100)我们使用著名的“Mall Customer”数据集的结构来模拟,它非常适合演示K-Means。首先,我们导入必要的库并生成/加载数据。python复制下载# 设置绘图风格# 生成模拟数据(在实际竞赛中,你会从CSV文件读取)np.random.seed(42) # 确保结果可重现。原创 2025-08-22 23:11:58 · 83 阅读 · 0 评论 -
备战2025数学建模国赛(算法68):神经网络
任务:利用过去24小时的多变量空气质量数据和气象数据,预测未来1小时的PM2.5浓度。数据说明:假设我们有一个数据集date_time: 时间戳(每小时一条)pm2.5: 目标变量PM10SO2NO2COO3: 其他污染物浓度temp: 温度humidity: 湿度pressure: 气压wind_speed: 风速: 风向第一步:导入必要的库python复制下载# 设置随机种子以保证结果可重现第二步:加载与探索数据python复制下载# 加载数据# 检查缺失值。原创 2025-08-22 23:11:21 · 260 阅读 · 0 评论 -
备战2025数学建模国赛(算法67):相关分析
相关分析是数学建模竞赛中不可或缺的第一步。它如同一把瑞士军刀,虽然简单,但功能强大且实用。理解不同相关系数的原理和适用场景。操作从数据加载、清洗到计算、可视化的全流程。解读相关系数和p值的统计与业务意义。应用相关分析结论来指导后续的特征工程和模型构建。避免“相关即因果”的常见误区,提升论文的严谨性。原创 2025-08-22 23:10:47 · 127 阅读 · 0 评论 -
备战2025数学建模国赛(算法66):融合LightGBM与逻辑回归的Stacking集成学习:数学建模竞赛中的终极杀器
在数学建模竞赛(如“高教社杯”全国大学生数学建模竞赛、“美赛”MCM/ICM)中,分类问题始终是一大类核心赛题。从客户流失预测、疾病诊断到用户信用评级,一个强大且鲁棒的分类模型往往是取得优异成绩的关键。单一模型(如逻辑回归、决策树、SVM)往往容易受到数据噪声、特征复杂性和模型假设的局限,导致泛化能力不足。集成学习(Ensemble Learning),特别是Stacking(堆叠泛化)技术,通过组合多个异质基学习器的优势,能显著提升模型的预测性能和稳定性。原创 2025-08-22 23:09:51 · 166 阅读 · 0 评论 -
备战2025数学建模国赛(算法65):Fisher判别分析
在数学建模竞赛中,我们常常会遇到需要对研究对象进行分类或判断的问题。例如,根据西瓜的各类指标判断其好坏,根据经济数据判断一个国家的发展程度,或根据病人的医学影像特征判断其是否患病。这类“分类判别”问题,是建模竞赛中最常见的题型之一。Fisher判别分析(或称线性判别分析,LDA)作为一种经典的、有监督的降维与分类方法,因其模型简洁、可解释性强、计算高效而备受青睐。原创 2025-08-22 23:09:10 · 302 阅读 · 0 评论 -
备战2025数学建模国赛(算法64):Bayes判别在数学建模竞赛中的全攻略
Bayes判别是数学建模竞赛中处理分类问题的一个强大而实用的工具包。它完美地融合了概率思维与统计模型,其输出结果(概率和分类)具有极高的解释价值。数据探索与可视化(EDA):理解数据结构和类别关系。数据预处理与划分:为模型评估做准备。模型训练与评估:比较LDA和QDA,选择更优者。模型解释与可视化:深入理解模型如何做出决策,提升论文质量。模型应用:对新样本进行分类并评估不确定性。原创 2025-08-22 23:08:37 · 346 阅读 · 0 评论 -
备战2025数学建模国赛(算法62):数学建模竞赛利器:支持向量机 (SVM) 从理论到实战全解析
SVM 是一种经典的监督学习算法,最初用于解决二分类问题,后经扩展也能处理多分类和回归任务。其基本模型定义为:在特征空间中寻找一个分离超平面,使得两类样本点之间的间隔被最大化。这个“间隔最大化”的特性使得 SVM 具有优秀的泛化能力,不易过拟合。题目:某河流管理部门定期对多个监测断面进行水质检测,检测指标包括pH值、溶解氧(DO)、高锰酸盐指数(CODMn)、氨氮(NH3-N)等。根据国家标准,水质可分为I类、II类、III类、IV类、V类和劣V类共六个等级。原创 2025-08-22 23:05:48 · 319 阅读 · 0 评论 -
备战2025数学建模国赛(算法61):逻辑回归
在数学建模竞赛中,我们常常会遇到需要对研究对象进行分类或预测其归属概率的问题。例如,预测一封邮件是否为垃圾邮件、判断一名患者是否患有某种疾病、分析一个用户是否会购买某件商品等。这类问题的目标变量通常是二分类的(是/否,成功/失败,0/1)。逻辑回归(Logistic Regression)正是解决这类二分类问题的强大且经典的模型。尽管其名称中含有“回归”,但它实际上是一种分类算法,尤其以输出事件发生的概率而见长。原创 2025-08-22 23:05:14 · 234 阅读 · 0 评论 -
备战2025数学建模国赛(算法61):决策树与随机森林
在数学建模竞赛的战场上,面对错综复杂的数据和多元化的预测问题,选择合适的算法往往是决定成败的关键。在众多的机器学习模型中,决策树以其直观易懂、无需复杂预处理的特点脱颖而出。而以其为基础构建的随机森林,更是融合了“集思广益”的集成思想,成为应对高维、非线性问题的强大工具,常被誉为“万金油”算法。本文将深入浅出地探讨决策树与随机森林的核心原理,并通过一个完整的数学建模案例——“城市空气质量预测与影响因素分析”,详细展示从问题理解、数据预处理、模型构建、调优到结果分析的全流程。原创 2025-08-22 23:04:06 · 178 阅读 · 0 评论 -
备战2025数学建模国赛(算法60):熵权TOPSIS模型
熵”这个概念源于热力学,表示系统的混乱程度。在信息论中,信息熵则用来度量信息的不确定性或无序程度。基本逻辑:对于一个特定的指标,如果所有评价对象在该指标上的数值差异很大(非常离散),那么这个指标所包含的信息量就越大,不确定性也越大,熵就越小。因为这样一个指标更容易将不同对象区分开,所以它理应被赋予更大的权重。反之,如果一个指标的数据非常接近(甚至全部相同),那么这个指标提供的信息量就很小,熵值很大,其权重就应该很小。熵权法的精髓就在于,它完全基于数据本身。原创 2025-08-22 23:00:25 · 190 阅读 · 0 评论 -
备战2025数学建模国赛(算法59):数据包络分析
数据包络分析法(DEA)为数学建模竞赛提供了一个强大、直观且理论扎实的效率评价工具。通过本文介绍的原理、案例和代码,希望你能掌握这一方法,并在未来的竞赛中灵活运用它来解决各类绩效评价问题,让你的论文在众多作品中脱颖而出。记住,熟练的工具使用加上深刻的数据洞察,才是取胜之道。原创 2025-08-22 22:59:51 · 278 阅读 · 0 评论 -
备战2025数学建模国赛(算法58):模糊综合评价法
在数学建模竞赛中,我们常常需要处理一些难以用“是”或“否”这种精确方式评价的复杂系统。这些系统中充满了模糊性和不确定性,例如“环境质量很好”、“用户体验优秀”、“风险较高”等。模糊综合评价法(Fuzzy Comprehensive Evaluation, FCE)正是解决这类问题的强大工具。本文将深入浅出地介绍FCE的数学原理、建模步骤,并通过一个完整的“智慧城市发展水平评估”案例,手把手教你如何将其应用于数学建模竞赛,并提供可复用的Python代码。原创 2025-08-22 22:58:58 · 283 阅读 · 0 评论 -
备战2025数学建模国赛(算法57):层次分析法(AHP)原理、实战与Python代码全解析
在数学建模竞赛中,我们常常面临这样一个困境:题目给出的问题涉及多个决策准则,且这些准则的重要性各不相同,同时存在大量定性而非定量的指标。如何系统化、科学地将人的主观判断转化为客观的权重,从而做出最优决策?层次分析法(Analytic Hierarchy Process, AHP)正是解决这类问题的强大工具。本文将深入浅出地解析AHP模型的数学原理,通过一个完整的“旅游目的地选择”案例演示其在数学建模中的应用,并提供手把手教学的Python代码实现,助你在未来的竞赛中游刃有余。原创 2025-08-22 22:57:25 · 193 阅读 · 0 评论 -
备战2025数学建模国赛(算法56):支持向量回归(SVR)在数学建模竞赛中的全攻略
通过这个完整的案例,你应该已经掌握了SVR在数学建模竞赛中的全套流程。时序数据交叉验证: 如果数据是时间序列,切勿使用简单的。应使用,确保验证集的数据永远在训练集之后,避免“未来信息泄露”。集成学习: 可以将SVR作为基模型,使用Bagging或Stacking等集成方法进一步提升预测稳定性。贝叶斯优化: 当超参数搜索空间很大时,会非常慢。可以使用或Optuna等库进行更高效的超参数搜索。论文写作: 在论文中,不仅要展示结果,更要清晰地阐述为什么选择SVR模型,以及调参过程的科学性和结果的可解释性。原创 2025-08-22 22:56:41 · 203 阅读 · 0 评论 -
备战2025数学建模国赛(算法55):基于BP神经网络的数据预测模型
BP神经网络为数学建模竞赛解决复杂的非线性预测问题提供了一个强大而灵活的工具箱。通过本博客的详细讲解和实战案例,希望你能够理解其核心思想,掌握其实现流程,并能在下一次竞赛中自信地运用它。记住,成功的建模不仅仅在于选择最复杂的算法,更在于对问题的深刻理解、严谨的数据处理、细致的模型调优以及清晰的论文表述。祝你取得好成绩!原创 2025-08-22 22:56:09 · 249 阅读 · 0 评论 -
备战2025数学建模国赛(算法54):灰色预测模型GM(1,1):原理、应用与数学建模竞赛全攻略
在数学建模竞赛中,我们常常会遇到这样的问题:“根据过去几年的数据,预测未来几年的发展趋势”。本文将深入剖析GM(1,1)模型的数学原理,提供一个完整的数学建模竞赛使用案例,并给出详细的Python代码实现,最后分享在竞赛中运用该模型的技巧与注意事项。:程序会生成一张图表,清晰展示2013-2022年的原始数据、模型拟合曲线以及2023-2025年的预测值,直观地显示出用水量的增长趋势。我们的任务是使用GM(1,1)模型完成预测,并进行全面的模型检验。这个连续方程的解,将是我们进行预测的关键。原创 2025-08-21 15:09:48 · 82 阅读 · 0 评论 -
备战2025数学建模国赛(算法53):蚁群算法 (ACO) 在数学建模竞赛中的应用与实践
蚁群算法 (Ant Colony Optimization, ACO) 作为一种模拟自然界蚂蚁觅食行为的元启发式算法,因其在解决组合优化问题方面的卓越表现,已成为数学建模竞赛中的重要工具。本文将深入探讨蚁群算法的原理、实现方式,并通过旅行商问题(TSP)的完整案例展示如何在数学建模竞赛中应用这一算法。蚁群算法作为一种强大的元启发式优化算法,在数学建模竞赛中具有广泛的应用前景。旅行商问题是一个经典的组合优化问题:给定一系列城市和每对城市之间的距离,找到访问每一座城市一次并回到起始城市的最短回路。原创 2025-08-21 15:08:59 · 50 阅读 · 0 评论 -
备战2025数学建模国赛(算法52):时间序列模型在数学建模竞赛中的核心应用
在数学建模中,最常用的是Box-Jenkins方法下的ARIMA模型家族。AR (自回归模型)思想:用自身过去的值来预测当前值。公式Xtcϕ1Xt−1ϕ2Xt−2ϕpXt−pϵtXtcϕ1Xt−1ϕ2Xt−2...ϕpXt−pϵt参数p(滞后阶数),由PACF图决定。MA (移动平均模型)思想:模型当前值是过去一系列白噪声误差项的线性组合。公式Xtμϵtθ1ϵ。原创 2025-08-21 15:08:22 · 89 阅读 · 0 评论 -
备战2025数学建模国赛(算法51):移动平均法
可视化是王道:在论文中,务必通过图表展示移动平均的效果。一张包含原始数据和多条移动平均线的图,比大段文字更有说服力。作为基线模型:在任何预测问题中,都先建立一个简单的移动平均预测模型作为基线。这体现了建模的严谨性和层次性。组合使用:移动平均很少单独作为最终模型,它更多的是一个预处理和辅助分析工具。将其与ARIMA、回归模型、机器学习模型结合,是获奖论文的常见策略。解释清楚:在论文中,不要假设评委都知道移动平均。原创 2025-08-21 15:07:50 · 25 阅读 · 0 评论 -
备战2025数学建模国赛(算法50):遗传算法 (GA)
在数学建模竞赛中,我们常常会遇到一些令人头疼的优化问题:变量多如牛毛、约束条件复杂、目标函数怪异,甚至无法求导。面对这些“硬骨头”,传统的基于微积分的优化方法(如梯度下降法、牛顿法等)往往显得力不从心,甚至完全失效。它通过对一个种群(一组候选解)进行选择、交叉、变异等操作,使种群不断进化,从而产生出越来越适应环境(目标函数)的个体(最优解)。它不依赖于问题的具体数学性质,仅凭“优胜劣汰”的自然法则,就能在浩瀚的搜索空间中寻找到优秀解。旅行商问题是优化领域的经典问题,也是数学建模竞赛中的常客。原创 2025-08-21 15:06:51 · 88 阅读 · 0 评论 -
备战2025数学建模国赛(算法49):模拟退火算法
解的表达:一个解可以表示为一个城市编号的排列,例如表示从城市0出发,依次访问3、1、2,最后返回0。目标函数:总路径长度总距离 = d(0,3) + d(3,1) + d(1,2) + d(2,0)。我们的目标是最小化这个总距离。挑战:城市数量为N时,可能的路径数为(N-1)!/ 2。这是一个典型的NP难问题,无法在多项式时间内找到精确最优解,必须借助SA等启发式算法。模拟退火算法以其优雅的隐喻、简单的实现和强大的全局搜索能力,在理论和应用领域都占据了重要地位。原创 2025-08-21 15:06:17 · 94 阅读 · 0 评论 -
备战2025数学建模国赛(算法48):粒子群算法
粒子群算法以其独特的魅力和强大的性能,已成为解决数学建模竞赛中复杂优化问题的利器。它教会我们的不仅是算法本身,更是一种从自然现象中汲取智慧的思维方式。希望这篇博客能成为你在数学建模道路上的有力助手,助你在下一次竞赛中,像鸟群一样,精准地找到问题的最优解!原创 2025-08-21 15:05:19 · 19 阅读 · 0 评论 -
备战2025数学建模国赛(算法37):机器学习预测模型在数学建模竞赛中的制胜之道
读懂题目,明确预测目标(Target/Label),初步观察数据字段、类型和规模。原创 2025-08-21 15:04:36 · 263 阅读 · 0 评论