蓝桥杯 试题 历届真题 路径之谜【第七届】【决赛】【B组】

本文介绍了一种基于深度优先搜索的算法,解决骑士在奇怪城堡中按习俗从西北角到东南角的行走路径问题,仅通过箭靶数量确定行走路线。给定靶子箭数,通过DFS策略找出唯一路径并输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

题目

小明冒充X星球的骑士,进入了一个奇怪的城堡。
  城堡里边什么都没有,只有方形石头铺成的地面。

假设城堡地面是 n x n 个方格。如下图所示:

按习俗,骑士要从西北角走到东南角。
  可以横向或纵向移动,但不能斜着走,也不能跳跃。
  每走到一个新方格,就要向正北方和正西方各射一箭。
  (城堡的西墙和北墙内各有 n 个靶子)

同一个方格只允许经过一次。但不必做完所有的方格。

如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?

有时是可以的,比如图1.png中的例子。

本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)
输入格式
  第一行一个整数N(0<N<20),表示地面有 N x N 个方格
  第二行N个整数,空格分开,表示北边的箭靶上的数字(自西向东)
  第三行N个整数,空格分开,表示西边的箭靶上的数字(自北向南)
输出格式
  一行若干个整数,表示骑士路径。

为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3…
  比如,图1.png中的方块编号为:

0 1 2 3
  4 5 6 7
  8 9 10 11
  12 13 14 15

示例:
  用户输入:
  4
  2 4 3 4
  4 3 3 3

程序应该输出:
  0 4 5 1 2 3 7 11 10 9 13 14 15

思路

一个简单的DFS,将每个靶子上的数看成每一行(西边的靶子)或每一列(北边的靶子)经过点的总数最大值。DFS遍历每个点的四个方向,能进入下一格的条件为:

  1. 不出边界
  2. 该格未被访问过
  3. 进入该格后,该格对应北边和西边的靶子上的数不小于0(开枪,将事先保存靶子上的数-1)

到达东南角后,需要判断所有的靶子上的数是否都为0。都为0则为正确路径,output输出。

代码

#include<iostream>

using namespace std;


int map[25][25];
int N;
int dir[4][2]={{1,0},{-1,0},{0,-1},{0,1}};//下上左右 
int top[25];
int left1[25];
int  one[25][25];
bool in(int i,int j)
{
	if(i>=0&&i<N&&j>=0&&j<N)
		return true;
	else 
		return false;
}

void output(int i,int j)
{
	if(i==0&&j==0)
		cout<<0<<" ";
	else
	{
		int k,m;
		k=map[i][j]/N;
		m=map[i][j]%N;
		output(k,m);
		cout<<i*N+j<<" ";
	}
}

void dfs(int i,int j)
{
	if(i==N-1 && j==N-1)
	{
		
		for(int k=0;k<N;k++)
			if(top[k]!=0||left1[k]!=0)
				return;
		output(N-1,N-1);
		/*
		cout<<endl;
	for(int i=0;i<N;i++)
	{
		for(int j=0;j<N;j++)
			cout<<map[i][j]<<" ";
		cout<<endl;
	}
	*/
	}
	else
	{
		for(int k=0;k<4;k++)
		{
			if(!one[i+dir[k][0]][j+dir[k][1]]&&in(i+dir[k][0],j+dir[k][1]) && top[j+dir[k][1]]-1>=0 && left1[i+dir[k][0]]-1>=0)
			{
				
				top[j+dir[k][1]]--;one[i+dir[k][0]][j+dir[k][1]]=1;
				left1[i+dir[k][0]]--;
				map[i+dir[k][0]][j+dir[k][1]]=i*N+j;
				dfs(i+dir[k][0],j+dir[k][1]);
				map[i+dir[k][0]][j+dir[k][1]]=0;
				left1[i+dir[k][0]]++;
				top[j+dir[k][1]]++;
				one[i+dir[k][0]][j+dir[k][1]]=0;
			} 
		}
	}
}

int main()
{
	cin>>N;
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			map[i][j]=0;
	for(int i=0;i<N;i++)
		cin>>top[i];
	for(int i=0;i<N;i++)
		cin>>left1[i];
	top[0]--;left1[0]--;
	one[0][0]=1;
	dfs(0,0);

}
/*

4
2 4 3 4
4 3 3 3
*/
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值