题目
小明冒充X星球的骑士,进入了一个奇怪的城堡。
城堡里边什么都没有,只有方形石头铺成的地面。
假设城堡地面是 n x n 个方格。如下图所示:
按习俗,骑士要从西北角走到东南角。
可以横向或纵向移动,但不能斜着走,也不能跳跃。
每走到一个新方格,就要向正北方和正西方各射一箭。
(城堡的西墙和北墙内各有 n 个靶子)
同一个方格只允许经过一次。但不必做完所有的方格。
如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?
有时是可以的,比如图1.png中的例子。
本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)
输入格式
第一行一个整数N(0<N<20),表示地面有 N x N 个方格
第二行N个整数,空格分开,表示北边的箭靶上的数字(自西向东)
第三行N个整数,空格分开,表示西边的箭靶上的数字(自北向南)
输出格式
一行若干个整数,表示骑士路径。
为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3…
比如,图1.png中的方块编号为:
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
示例:
用户输入:
4
2 4 3 4
4 3 3 3
程序应该输出:
0 4 5 1 2 3 7 11 10 9 13 14 15
思路
一个简单的DFS,将每个靶子上的数看成每一行(西边的靶子)或每一列(北边的靶子)经过点的总数最大值。DFS遍历每个点的四个方向,能进入下一格的条件为:
- 不出边界
- 该格未被访问过
- 进入该格后,该格对应北边和西边的靶子上的数不小于0(开枪,将事先保存靶子上的数-1)
到达东南角后,需要判断所有的靶子上的数是否都为0。都为0则为正确路径,output输出。
代码
#include<iostream>
using namespace std;
int map[25][25];
int N;
int dir[4][2]={{1,0},{-1,0},{0,-1},{0,1}};//下上左右
int top[25];
int left1[25];
int one[25][25];
bool in(int i,int j)
{
if(i>=0&&i<N&&j>=0&&j<N)
return true;
else
return false;
}
void output(int i,int j)
{
if(i==0&&j==0)
cout<<0<<" ";
else
{
int k,m;
k=map[i][j]/N;
m=map[i][j]%N;
output(k,m);
cout<<i*N+j<<" ";
}
}
void dfs(int i,int j)
{
if(i==N-1 && j==N-1)
{
for(int k=0;k<N;k++)
if(top[k]!=0||left1[k]!=0)
return;
output(N-1,N-1);
/*
cout<<endl;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
cout<<map[i][j]<<" ";
cout<<endl;
}
*/
}
else
{
for(int k=0;k<4;k++)
{
if(!one[i+dir[k][0]][j+dir[k][1]]&&in(i+dir[k][0],j+dir[k][1]) && top[j+dir[k][1]]-1>=0 && left1[i+dir[k][0]]-1>=0)
{
top[j+dir[k][1]]--;one[i+dir[k][0]][j+dir[k][1]]=1;
left1[i+dir[k][0]]--;
map[i+dir[k][0]][j+dir[k][1]]=i*N+j;
dfs(i+dir[k][0],j+dir[k][1]);
map[i+dir[k][0]][j+dir[k][1]]=0;
left1[i+dir[k][0]]++;
top[j+dir[k][1]]++;
one[i+dir[k][0]][j+dir[k][1]]=0;
}
}
}
}
int main()
{
cin>>N;
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
map[i][j]=0;
for(int i=0;i<N;i++)
cin>>top[i];
for(int i=0;i<N;i++)
cin>>left1[i];
top[0]--;left1[0]--;
one[0][0]=1;
dfs(0,0);
}
/*
4
2 4 3 4
4 3 3 3
*/