思路
线性dp;
dp[i][j]表示i个骰子掷出数j的种数;
一个骰子可以掷出1~6,投掷i次得出数j可以表示为投掷i-1次得到j-k后,再投掷一次得到k(k取1至6),所以状态转移方程为
dp[i][j]+=dp[i-1][j-k], k=1~6;
代码
class Solution {
public:
bool in(int i,int j)
{
return i>0&&j>=0;
}
vector<int> numberOfDice(int n) {
int dp[100][100];
for(int i=1;i<=6;i++)
dp[1][i]=1;
for(int i=2;i<=n;i++)
{
for(int j=i;j<=i*6;j++)
{
for(int k=1;k<7;k++)
{
if(in(i-1,j-k))
dp[i][j]+=dp[i-1][j-k];
}
//cout<<dp[i][j]<<" ";
}
//cout<<endl;
}
vector<int> ans;
for(int i=n;i<=6*n;i++)
ans.push_back(dp[n][i]);
return ans;
}
};