
三维重建
文章平均质量分 90
零基础对三维重建过往技术进行概述,对于各种性能表现优越的模型进行总结,涵盖代码、创新点、技术路线、路线介绍
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
周末不下雨
电子信息专业江苏省211研究生研一在读,阿里云平台专家博主,csdn平台专家博主,人工智能领域新星创作者,51CTO特邀博主,本科发表省级期刊一作论文2篇,在嵌入式,电子类,数模比赛中获多次国奖省奖,获学校各项奖金1W+,发布博客300+,擅长嵌入式方面的C/C++/qt技术等,商务合作+v:Elementary-function
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
三维重建(二十三)——各种参数的测试(废案)
三维重建(二十三)——各种参数的测试(废案)原创 2025-05-18 16:24:05 · 146 阅读 · 0 评论 -
三维重建(二十二)——RTK的放入py3d的测试结果
三维重建(二十二)——RTK的放入py3d的测试结果原创 2025-05-08 11:16:15 · 423 阅读 · 0 评论 -
三维重建(二十一)——第二步和第三步
三维重建(二十一)——第二步和第三步原创 2025-05-05 22:02:46 · 186 阅读 · 0 评论 -
三维重建(二十)——思路整理与第一步的进行
三维重建(二十)——思路整理与第一步的进行原创 2025-04-26 21:06:37 · 132 阅读 · 0 评论 -
小测验——渲染结果放入模型之失败记录
小测验——渲染结果放入模型之失败记录原创 2025-04-24 08:41:38 · 158 阅读 · 0 评论 -
小测验——根据调整好的参数进行批量输出
小测验——根据调整好的参数进行批量输出原创 2025-04-22 19:37:11 · 158 阅读 · 0 评论 -
小测验——已经能利用数据集里面的相机外参调整后看到渲染图像
小测验——已经能利用数据集里面的相机外参调整后看到渲染图像原创 2025-04-19 20:29:37 · 394 阅读 · 0 评论 -
python代码——一些可视化和可交互中间产物的整理(代码与思考)
python代码——一些可视化和可交互中间产物的整理(代码与思考)原创 2025-04-09 20:36:46 · 253 阅读 · 0 评论 -
小测验——数据集中的相机参数与自己投影文件的格式对齐
小测验——数据集中的相机参数与自己投影文件的格式对齐原创 2025-04-09 16:04:56 · 99 阅读 · 0 评论 -
pytorch3d学习(六)——python小结+相机参数适配结果
碎片记录——python小结+相机参数适配结果原创 2025-04-06 16:15:30 · 104 阅读 · 0 评论 -
小测验——合并多个网格文件调用相机参数进行适配
小测验——合并多个网格文件调用相机参数进行适配原创 2025-03-28 16:57:30 · 148 阅读 · 0 评论 -
三维重建(十九)——对齐npy里面的相机参数
三维重建(十九)——对齐npy里面的相机参数原创 2025-03-26 11:12:04 · 123 阅读 · 0 评论 -
三维重建(十八)——colmap的使用(粗浅)
三维重建(十八)——colmap的使用(粗浅)原创 2025-03-26 10:52:27 · 726 阅读 · 0 评论 -
pytorch3d学习(五)——批量输出图片+对渲染器的位姿解读+npy文件解读
pytorch3d学习(五)——批量输出图片+对渲染器的位姿解读+npy文件解读原创 2025-03-19 18:59:33 · 339 阅读 · 0 评论 -
pytorch3d学习(四)——批处理(实现多obj文件读取)
pytorch3d学习(四)——批处理(实现多obj文件读取)原创 2025-03-19 09:58:22 · 244 阅读 · 0 评论 -
三维重建(十七)——obj文件解读+ply文件解读
三维重建(十七)——obj文件解读+ply文件解读原创 2025-03-17 20:13:40 · 407 阅读 · 0 评论 -
小测验——对同一网格进行投影与反投影
小测验——对同一网格进行投影与反投影原创 2025-03-17 09:41:47 · 87 阅读 · 0 评论 -
小测验——根据内参计算一对RGB-D图像对应的点云
小测验——根据内参计算一对RGB-D图像对应的点云原创 2025-03-16 16:55:49 · 169 阅读 · 0 评论 -
小测验——根据已有obj文件,自己写出网格投影至2d
小测验——根据已有obj文件,自己写出网格投影至2d原创 2025-03-15 20:19:20 · 149 阅读 · 0 评论 -
视觉slam十四讲(四)——相机与图像
视觉slam十四讲(四)——相机与图像原创 2025-03-14 08:14:40 · 234 阅读 · 0 评论 -
视觉slam十四讲(三)——李群和李代数
视觉slam十四讲(三)——李群和李代数原创 2025-03-12 10:25:08 · 226 阅读 · 0 评论 -
视觉slam十四讲(二)——三维空间刚体运动
视觉slam十四讲(二)——三维空间刚体运动原创 2025-03-11 11:02:16 · 164 阅读 · 0 评论 -
三维重建(十六)——生成先验的使用
三维重建(十六)——生成先验的使用原创 2025-03-10 19:27:12 · 176 阅读 · 0 评论 -
视觉slam十四讲(一)——前言与ch1-2
视觉slam十四讲(一)——前言与ch1-2原创 2025-03-08 15:29:10 · 107 阅读 · 0 评论 -
pytorch3d学习(三)——渲染纹理网格
pytorch3d学习(三)——渲染纹理网格原创 2025-03-07 09:39:45 · 347 阅读 · 0 评论 -
pytorch3d学习(二)——安装与纹理显示demo测试
pytorch3d学习(二)——安装与纹理显示demo测试原创 2025-03-06 19:43:44 · 277 阅读 · 0 评论 -
pytorch3d学习(一)——开始(架构概述、输入数据、相机坐标系、纹理渲染)
pytorch3d学习(一)——开始(架构概述、输入数据、相机坐标系、纹理渲染)原创 2025-03-06 10:41:37 · 409 阅读 · 0 评论 -
三维重建(十五)——多尺度(coarse-to-fine)
三维重建(十五)——多尺度(coarse-to-fine)原创 2025-03-04 21:26:22 · 654 阅读 · 0 评论 -
三维重建(论文)——记录
三维重建(论文)——记录原创 2025-03-04 10:59:44 · 83 阅读 · 0 评论 -
ubuntu22.04下Meshlab打开obj文件闪退——使用Appimage并放入收藏夹中
ubuntu22.04下Meshlab打开obj文件闪退——使用Appimage并放入收藏夹中原创 2025-03-04 09:37:03 · 291 阅读 · 0 评论 -
三维重建(十四)——快速A+B
三维重建(十四)——快速A+B原创 2025-02-24 20:43:07 · 195 阅读 · 0 评论 -
三维重建(十四)——铰接类文章整理
铰接类原创 2025-02-22 15:06:09 · 322 阅读 · 0 评论 -
三维重建(十三)——多视角重建
本文综述了多视角三维重建技术,涵盖静态和动态场景的重建方法。介绍了从图像获取到纹理映射的SFM流程,以及非刚性重建(NRSFM)的挑战和解决方案。重点探讨了基于可微渲染的重建方法,以及数据采集策略、相机标定和同步技术。文章还讨论了如何用单视角相机模拟多视角重建,总结了关键技术和未来研究方向。原创 2025-02-19 09:16:24 · 656 阅读 · 0 评论 -
三维重建(十二)——3D先验的使用
三维重建(十二)——3D先验的使用原创 2025-02-14 11:30:11 · 431 阅读 · 0 评论 -
三维重建(零)——安装和作业(2DGS、GShell、colmap)
三维重建(零)——安装和作业(2DGS、GShell、colmap)原创 2025-02-05 11:21:59 · 311 阅读 · 0 评论 -
三维重建(十一)——变形场
三维重建(十一)——变形场原创 2025-01-24 18:09:50 · 341 阅读 · 0 评论 -
三维重建(十)——论文部分的每章要点
三维重建(十)——论文部分的每章要点原创 2025-01-17 20:28:24 · 177 阅读 · 0 评论 -
三维重建(九)——如何完成一篇好文章
三维重建(九)——如何完成一篇好文章原创 2025-01-11 10:12:25 · 279 阅读 · 0 评论 -
三维重建(八)——神经网络与几何的正则化整理✌️✌️✌️
分网络和几何的监督项:输入的图像和渲染的图像进行相似、监督网络训练中,正则化(Regularization)是一种防止模型过拟合的重要技术。几何处理中(包括3DGS中心点的部分处理),合适的正则化可以避免(减缓)发生碰撞、破碎、凹陷、孔洞等问题,在训练过程中,监督项收敛,但结果不合适时,要考虑是否有正则项能改善这一问题。可能在一个视角可以,但是其他视角不行;跟监督项时对抗的,但是可以在测试集上表现好。三维重建的测试集是,如果是几何,训练集是图片,测试集是几何。原创 2025-01-08 08:52:59 · 199 阅读 · 0 评论 -
【2W6千字详解代码】三维重建(七)——GShell的代码解读
GShell的代码解读原创 2025-01-06 11:04:32 · 283 阅读 · 0 评论