使用python实现随机正态分布数据,并导出到表格(超详细)


一、前言

最近需要大量的正态分布的数据,为了方便,使用python实现随机正态分布,画出理想正态分布图和实际的矩形分布,并导出到表格里面。

二、使用步骤

1.引入库

下面是编写代码所用到的库

import numpy as np   #随机数
import matplotlib.pyplot as plt   #画图
import xlwt    #导出表格

2.随机正态分布生成算法

生成的数据是100*100,且使用了两种生成正态分布的算法。

  • 一种是基于最大值、最小值范围得到的随机分布。
result = np.random.randint(0, 100, size=100) # 最小值,最大值,数量

在这里插入图片描述

  • 一种是基于均值和标准差得到的随机分布。
result = np.random.normal(60, 20, (row,cols))  # 均值,标准差,数量

在这里插入图片描述

可以看到,两种算法当中,基于均值和标准差得到的数据更接近正态分布,接下来以第二种做演示。

2.1.利用np.random.normal函数生成二维数据

# 根据均值、标准差,求指定范围的正态分布概率值
def normfun(x, mu, sigma):
  pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
  return pdf

row = 100  #行
cols = 100  #列

#随机生成,整体正态分布
# result = np.random.randint(0, 100, size=100) # 最小值,最大值,数量
result = np.random.normal(60, 20, (row,cols))  # 均值,标准差,数量
#print(result)

生成的数据
在这里插入图片描述

2.2.利用for循环生成100*100数据

# 根据均值、标准差,求指定范围的正态分布概率值
def normfun(x, mu, sigma):
  pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
  return pdf

row = 100  #行
cols = 84  #列
result_arr = [[0 for<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值