目标检测算法——遥感影像数据集资源汇总(附下载链接)

 

>>>深度学习资料,第一时间送达<<<

目录

一、用于 2-5 分类问题

1.UCAS-AOD 遥感影像数据集 

2.Inria Aerial Image Labeling Dataset 

3.RSOD-Dataset 物体检测数据集 

二、用于 5-10 分类问题

1.RSSCN7 DataSet 遥感图像数据集 

2.NWPU VHR-10 地理空间物体检测遥感数据集 

三、用于 11-20 分类问题

1.RSC11 DataSet 遥感影像数据集 

2.SIRI-WHU 遥感影像数据集 

3.WHU-RS19 DataSet 遥感影像数据集 

四、用于 20+ 分类问题

1.UC Merced Land-Use DataSet 

2.AID DataSet 遥感影像数据集 

3.NWPU DataSet 遥感影像数据集 

小海带整理不易,小伙伴们多多点赞哇!!!


近期,小海带在空闲之余收集整理了一些遥感影像数据集资源供大家参考。共11 个遥感数据集资源,其检测目标分类少则 2 种,多则可达 45 类。

一、用于 2-5 分类问题

1.UCAS-AOD 遥感影像数据集 

UCAS AOD 遥感影像数据集,用于飞机和车辆检测。具体来说,飞机数据集包括 600 张图像和 3210 架飞机,而车辆数据集包括 310 张图像和 2819 辆车辆。所有的图像都经过精心挑选,使数据集中的物体方向分布均匀。

车辆(a)与飞机(b)目标检测示例

该数据集由中国科学院大学(国科大)于 2014 年首次发布,并于 2015 年补充,相关论文有《Orientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural Network》。

以下是该数据集的详细信息:

UCAS-AOD 遥感影像数据集

发布机构:中国科学院大学

更新时间:2014 年发布,2015 年补充

包含数量:600 张飞机 & 310 张车辆图像

图像来源:谷歌地球卫星图像

数据格式:.png

图片尺寸:1280*659

数据大小:3.48GB

类别数量: 2 类

下载地址:https://hyper.ai/datasets/5419

2.Inria Aerial Image Labeling Dataset 

Inria Aerial Image Labeling Dataset 是一个用于城市建筑物检测的遥感图像数据集,其标记被分为建筑(building)和非建筑(not building)两种,主要用于语义分割。

以下是该数据集的详细信息:

Inria Aerial Image Labeling 数据集

发布机构:INRIA(法国国家信息与自动化研究所)

发布时间:2017 年

包含数量:360 张图像 

数据格式:GeoTiff

图像尺寸:5000*5000

数据大小:69GB

类别数量:2 类

发布时间:2017 年

下载地址:https://hyper.ai/datasets/5428

3.RSOD-Dataset 物体检测数据集 

RSOD Dataset 是用于遥感图像中物体检测的数据集,其包含飞机、操场、立交桥和油桶四类目标,数量分别为:

>飞机:446 张图,包含 4993 架飞机;

>操场:189 张图,包含 191 个操场;

>立交桥:176 张图,包含 180 座立交桥;

>油桶:165 张图,包含 1586 个油桶。

以下是该数据集的详细信息:

RSOD Dataset

发布机构:武汉大学

发布时间:2015 年

包含数量:976 张图像 

数据格式:.jpg

数据大小:324.96MB

类别数量:4 类

下载地址:https://hyper.ai/datasets/5425

二、用于 5-10 分类问题

1.RSSCN7 DataSet 遥感图像数据集 

RSSCN7 Dataset 包含 2800 幅遥感图像,这些图像来自于 7 个典型的场景类别 —— 草地、森林、农田、停车场、住宅区、工业区和河湖,其中每个类别包含 400 张图像,分别基于 4 个不同的尺度进行采样。

该数据集中每张图像的像素大小为 400*400,场景图像的多样性导致其具有较大的挑战性,这些图像来源于不同季节和天气变化,并以不同的比例进行采样。

以下是该数据集的详细信息:

RSSCN7 Dataset

发布机构:武汉大学

发布时间:2015 年

包含数量:2800 张图像 

数据格式:.jpg

图像尺寸:400*400

数据大小:348.02MB

类别数量:7 类

下载地址:https://hyper.ai/datasets/5440

2.NWPU VHR-10 地理空间物体检测遥感数据集 

NWPU VHR-10 Dataset 是一个用于空间物体检测的 10 级地理遥感数据集,其拥有 650 张包含目标的图像和 150 张背景图像,共计 800 张,是从Google Earth和Vaihingen数据集裁剪而来的,然后由专家手动注释。

其目标种类包括飞机、舰船、油罐、棒球场、网球场、篮球场、田径场、港口、桥梁和汽车共计 10 个类别。

以下是该数据集的详细信息: 

NWPU VHR-10 数据集

发布机构:西北工业大学

发布时间:2014 年

包含数量:800 张图像

数据格式:.jpg

数据大小:73MB

类别数量:10 类

下载地址:https://hyper.ai/datasets/5422

三、用于 11-20 分类问题

1.RSC11 DataSet 遥感影像数据集 

RSC11 Dataset 是一个遥感影像数据集,来源于 Google Earth 的高分辨率遥感影像,合计包含 11 类场景图像,包括密林、疏林、草原、港口、高层建筑、低层建筑、立交桥、铁路、居民区、道路、储罐。其中每类有约 100 张,共计 1232 张,空间分辨率为 0.2 米。

该数据集由中科院于 2015 年发布,主要发布人为赵立军。

以下是该数据集的详细信息:

RSC11  数据集

发布机构:中科院

发布时间:2015 年

包含数量:1232 张图像

数据格式:.tif

图片尺寸:512*512

数据大小:20.12MB

类别数量:11 类

下载地址:https://hyper.ai/datasets/5443

2.SIRI-WHU 遥感影像数据集 

SIRI-WHU Dataset 包含了 12 个类别的场景,图像共计 2400 张,其中每个类别有 200 张,每张图像的像素尺寸为 200*200,空间分辨率为 2 米。

该数据集资源来自 Google Earth,主要涵盖中国城市地区,其中场景图像数据集由武汉大学 RS-IDEA 集团设计。

以下是该数据集的详细信息:

SIRI-WHU  遥感影像数据集

发布机构:武汉大学

发布时间:2016 年

包含数量:2400 张图像

数据格式:.tif

图片尺寸:200*200

数据大小:162.08MB

类别数量:12 类

下载地址:https://hyper.ai/datasets/5437

3.WHU-RS19 DataSet 遥感影像数据集 

WHU-RS19 Dataset 是一个遥感影像数据集,其包含 19 个类别的场景影像共计 1005 张,其中每个类别有 50 张。可用于场景分类和检索。

该数据集由武汉大学于 2011 年发布,相关论文有《Satellite Image Classification via Two-layer Sparse Coding with Biased Image Representation》。

以下是该数据集的详细信息:

WHU-RS19 数据集

发布机构:武汉大学

发布时间:2011 年

包含数量:1005 张图像

数据格式:.tif

图片尺寸:600*600

数据大小:99.54MB

类别数量:19 类

下载地址:https://hyper.ai/datasets/5434

四、用于 20+ 分类问题

1.UC Merced Land-Use DataSet 

UC Merced Land-Use Dataset 是一个用于研究的 21 级土地利用图像遥感数据集,均提取自 USGS National Map Urban Area Imagery(美国地质调查局国家地图城市地区图像) 系列,其被用于全国各地的城市地区。

此数据集公共领域图像的像素分辨率为 1 英尺(0.3 米),图像像素大小为 256*256,包含 21 个类别的场景图像共计 2100 张,其中每个类别有 100 张。

这 21 个类别分别是:农业、飞机、棒球场、海滩、建筑物、树丛、密集住宅、森林、高速公路、高尔夫球场、港口、路口、中型住宅、移动家庭公园、立交桥、停车场、河、跑道、稀疏住宅、储油罐。

以下是该数据集的详细信息:

UC Merced Land-Use 数据集

发布机构:UC Merced Vision&Learning Lab

包含数量:2100 张

数据格式:.png

图片尺寸:256*256

数据大小:317.07MB

类别数量:21 类

发布时间:2010 年

下载地址:https://hyper.ai/datasets/5431

2.AID DataSet 遥感影像数据集 

AID Dataset 是一个遥感影像数据集,其包含 30 个类别的场景图像,其中每个类别有约 220–420 张,整体共计 10000 张,其中每张像素大小约为 600*600。

该数据集由华中科技大学和武汉大学于 2016 年发布,相关论文:《AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification》。

以下是该数据集的详细信息:

AID 遥感影像数据集

发布机构:华中科技大学和武汉大学

包含数量:10000 张

数据格式:.jpg

图片尺寸:600*600

数据大小:  2.47GB

类别数量:30 类

发布时间:2016 年

下载地址:https://hyper.ai/datasets/5446

3.NWPU DataSet 遥感影像数据集 

NWPU Dataset 遥感影像数据集,包含像素大小为 256*256 共计 31500 张图像,涵盖 45 个场景类别,其中每个类别有 700 张图像。

这 45 个场景类别包括飞机、机场、棒球场、篮球场、海滩、桥梁、丛林、教堂、圆形农田、云、商业区、密集住宅、沙漠、森林、高速公路、高尔夫球场、地面田径、港口、工业地区、交叉口、岛、湖、草地、中型住宅、移动房屋公园、山、立交桥、宫、停车场、铁路、火车站、矩形农田、河、环形交通枢纽、跑道、海、船舶、雪山、稀疏住宅、体育场、储水箱、网球场、露台、火力发电站和湿地。

该数据集由西北工业大学发布,相关论文有《Remote Sensing Image Scene Classification: Benchmark and State of the Art》。

以下是该数据集的详细信息:

NWPU Dataset 遥感影像数据集

发布机构:西北工业大学

包含数量:31500 张

数据格式:.jpg

图片尺寸:256*256

数据大小:  403.71MB

类别数量:45 类

发布时间:2017 年

下载地址:https://hyper.ai/datasets/5449

小海带整理不易,小伙伴们多多点赞哇!!!


🚀🏆🍀【算法创新&算法训练&论文投稿】相关链接👇👇👇


【YOLO创新算法尝新系列】

🏂 美团出品 | YOLOv6 v3.0 is Coming(超越YOLOv7、v8)

🏂 官方正品 | Ultralytics YOLOv8算法来啦(尖端SOTA模型)

🏂 改进YOLOv5/YOLOv7——魔改YOLOv5/YOLOv7提升检测精度(涨点必备)

————————————🌴【重磅干货来袭】🎄————————————

🚀一、主干网络改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合ConvNeXt结构(纯卷积|超越Swin)

2.目标检测算法——YOLOv5/YOLOv7改进之结合MobileOne结构(高性能骨干|仅需1ms)

3.目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2(涨点神器)

4.目标检测算法——YOLOv5/YOLOv7改进结合BotNet(Transformer)

5.目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

6.目标检测算法——YOLOv5/YOLOv7改进结合新神经网络算子Involution(CVPR 2021)

7.目标检测算法——YOLOv7改进|增加小目标检测层

8.目标检测算法——YOLOv5改进|增加小目标检测层

🌴 持续更新中……

🚀二、轻量化网络(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​RepVGG(速度飙升)

2.目标检测算法——YOLOv5/YOLOv7改进之结合​PP-LCNet(轻量级CPU网络)

3.目标检测算法——YOLOv5/YOLOv7改进之结合轻量化网络MobileNetV3(降参提速)

4.目标检测算法——YOLOv5/YOLOv7改进|结合轻量型网络ShuffleNetV2

5.目标检测算法——YOLOv5/YOLOv7改进结合轻量型Ghost模块

🌴 持续更新中……

🚀三、注意力机制(持续更新中)🎄🎈

1.目标检测算法——YOLOv5改进之结合CBAM注意力机制

2.目标检测算法——YOLOv7改进之结合CBAM注意力机制

3.目标检测算法——YOLOv5/YOLOv7之结合CA注意力机制

4.目标检测算法——YOLOv5/YOLOv7改进之结合ECA注意力机制

5.目标检测算法——YOLOv5/YOLOv7改进之结合NAMAttention(提升涨点)

6.目标检测算法——YOLOv5/YOLOv7改进之结合GAMAttention

7.目标检测算法——YOLOv5/YOLOv7改进之结合无参注意力SimAM(涨点神器)

8.目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

9.​目标检测算法——YOLOv5/YOLOv7改进之结合​SOCA(单幅图像超分辨率)

🌴 持续更新中……

🚀四、检测头部改进(持续更新中)🎄🎈

1.魔改YOLOv5/v7高阶版(魔法搭配+创新组合)——改进之结合解耦头Decoupled_Detect

2.目标检测算法——YOLOv5/YOLOv7改进结合涨点Trick之ASFF(自适应空间特征融合)

🌴 持续更新中……

🚀五、空间金字塔池化(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​ASPP(空洞空间卷积池化金字塔)

2.目标检测算法——YOLOv5/YOLOv7改进之结合特征提取网络RFBNet(涨点明显)

🌴 持续更新中……

🚀六、损失函数及NMS改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进|将IOU Loss替换为EIOU Loss

2.目标检测算法——助力涨点 | YOLOv5改进结合Alpha-IoU

3.目标检测算法——YOLOv5/YOLOv7改进之结合SIoU

4.目标检测算法——YOLOv5将NMS替换为DIoU-NMS

🌴 持续更新中……

🚀七、其他创新改进项目(持续更新中)🎄🎈

1.手把手教你搭建属于自己的PyQt5-YOLOv5目标检测平台(保姆级教程)

2.YOLO算法改进之结合GradCAM可视化热力图(附详细教程)

3.目标检测算法——YOLOv5/YOLOv7改进之结合SPD-Conv(低分辨率图像和小目标涨点明显)

4.目标检测算法——YOLOv5/YOLOv7改进之更换FReLU激活函数

5.目标检测算法——YOLOv5/YOLOv7改进之结合BiFPN

🌴 持续更新中……

🚀八、算法训练相关项目(持续更新中)🎄🎈

1.目标检测算法——YOLOv7训练自己的数据集(保姆级教程)

2.人工智能前沿——玩转OpenAI语音机器人ChatGPT(中文版)

3.深度学习之语义分割算法(入门学习)

4.知识经验分享——YOLOv5-6.0训练出错及解决方法(RuntimeError)

5.目标检测算法——将xml格式转换为YOLOv5格式txt

6.目标检测算法——YOLOv5/YOLOv7如何改变bbox检测框的粗细大小

7.人工智能前沿——6款AI绘画生成工具

8.YOLOv5结合人体姿态估计

9.超越YOLOv5,0.7M超轻量,又好又快(PP-YOLOE&PP-PicoDet)

10.目标检测算法——收藏|小目标检测的定义(一)

11.目标检测算法——收藏|小目标检测难点分析(二)

12.目标检测算法——收藏|小目标检测解决方案(三)

🌴 持续更新中……

🚀九、数据资源相关项目(持续更新中)🎄🎈

1.目标检测算法——小目标检测相关数据集(附下载链接)

2.目标检测算法——3D公共数据集汇总(附下载链接)

3.目标检测算法——3D公共数据集汇总 2(附下载链接)

4.目标检测算法——行人检测&人群计数数据集汇总(附下载链接)

5.目标检测算法——遥感影像数据集资源汇总(附下载链接)

6.目标检测算法——自动驾驶开源数据集汇总(附下载链接)

7.目标检测算法——自动驾驶开源数据集汇总 2(附下载链接)

8.目标检测算法——图像分类开源数据集汇总(附下载链接)

9.目标检测算法——医学图像开源数据集汇总(附下载链接)

10.目标检测算法——工业缺陷数据集汇总1(附下载链接)

11.目标检测算法——工业缺陷数据集汇总2(附下载链接)

12.目标检测算法——垃圾分类数据集汇总(附下载链接)

13.目标检测算法——人脸识别数据集汇总(附下载链接)

14.目标检测算法——安全帽识别数据集(附下载链接)

15.目标检测算法——人体姿态估计数据集汇总(附下载链接)

16.目标检测算法——人体姿态估计数据集汇总 2(附下载链接)

17.目标检测算法——车辆牌照识别数据集汇总(附下载链接)

18.目标检测算法——车辆牌照识别数据集汇总 2(附下载链接)

19.收藏 | 机器学习公共数据集集锦(附下载链接)

20.目标检测算法——图像分割数据集汇总(附下载链接)

21.目标检测算法——图像分割数据集汇总 2(附下载链接)

22.收藏 | 自然语言处理(NLP)数据集汇总(附下载链接)

23.自然语言处理(NLP)数据集汇总 2(附下载链接)

24.自然语言处理(NLP)数据集汇总 3(附下载链接)

25.自然语言处理(NLP)数据集汇总 4(附下载链接)

🌴 持续更新中……

🚀十、论文投稿相关项目(持续更新中)🎄🎈

1.论文投稿指南——收藏|SCI论文投稿注意事项(提高命中率)

2.论文投稿指南——收藏|SCI论文怎么投?(Accepted)

3.论文投稿指南——收藏|SCI写作投稿发表全流程

4.论文投稿指南——收藏|如何选择SCI期刊(含选刊必备神器)

5.论文投稿指南——SCI选刊

6.论文投稿指南——SCI投稿各阶段邮件模板

7.人工智能前沿——深度学习热门领域(确定选题及研究方向)

8.人工智能前沿——2022年最流行的十大AI技术

9.人工智能前沿——未来AI技术的五大应用领域

10.人工智能前沿——无人自动驾驶技术

11.人工智能前沿——AI技术在医疗领域的应用

12.人工智能前沿——随需应变的未来大脑

13.目标检测算法——深度学习知识简要普及

14.目标检测算法——10种深度学习框架介绍

15.目标检测算法——为什么我选择PyTorch?

16.知识经验分享——超全激活函数解析(数学原理+优缺点)

17.知识经验分享——卷积神经网络(CNN)

18.海带软件分享——Office 2021全家桶安装教程(附报错解决方法)

19.海带软件分享——日常办公学习软件分享(收藏)

20.论文投稿指南——计算机视觉 (Computer Vision) 顶会归纳

21.论文投稿指南——中文核心期刊

22.论文投稿指南——计算机领域核心期刊

23.论文投稿指南——中文核心期刊推荐(计算机技术)

24.论文投稿指南——中文核心期刊推荐(计算机技术2)

25.论文投稿指南——中文核心期刊推荐(计算机技术3)

26.论文投稿指南——中文核心期刊推荐(电子、通信技术)

27.论文投稿指南——中文核心期刊推荐(电子、通信技术2)

28.论文投稿指南——中文核心期刊推荐(电子、通信技术3)

29.论文投稿指南——中文核心期刊推荐(机械、仪表工业)

30.论文投稿指南——中文核心期刊推荐(机械、仪表工业2)

31.论文投稿指南——中文核心期刊推荐(机械、仪表工业3)

32.论文投稿指南——中国(中文EI)期刊推荐(第1期)

33.论文投稿指南——中国(中文EI)期刊推荐(第2期)

34.论文投稿指南——中国(中文EI)期刊推荐(第3期)

35.论文投稿指南——中国(中文EI)期刊推荐(第4期)

36.论文投稿指南——中国(中文EI)期刊推荐(第5期)

37.论文投稿指南——中国(中文EI)期刊推荐(第6期)

38.论文投稿指南——中国(中文EI)期刊推荐(第7期)

39.论文投稿指南——中国(中文EI)期刊推荐(第8期)

40.【1】SCI易中期刊推荐——计算机方向(中科院3区)

41.【2】SCI易中期刊推荐——遥感图像领域(中科院2区)

42.【3】SCI易中期刊推荐——人工智能领域(中科院1区)

43.【4】SCI易中期刊推荐——神经科学研究(中科院4区)

44.【5】SCI易中期刊推荐——计算机科学(中科院2区)

45.【6】SCI易中期刊推荐——人工智能&神经科学&机器人学(中科院3区)

46.【7】SCI易中期刊推荐——计算机 | 人工智能(中科院4区)

47.【8】SCI易中期刊推荐——图像处理领域(中科院4区)

48.【9】SCI易中期刊推荐——工程技术-计算机:软件工程(中科院4区)

49.【10】SCI易中期刊推荐——工程技术-计算机:人工智能(中科院2区)

50.【11】SCI易中期刊推荐——计算机方向(中科院4区)

51.【12】SCI易中期刊推荐——计算机信息系统(中科院4区)

🌴 持续更新中……

关于YOLO算法改进&论文投稿可关注并留言博主的CSDN/QQ

>>>一起交流!互相学习!共同进步!<<<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

加勒比海带66

清风徐来,水波不兴。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值