走方格的方案数

该博客探讨了如何计算n*m棋盘从左上角到右下角的走法总数,要求只能沿着边缘线且不能回头。博主首先提供了一个复杂的方法,然后通过观察发现了更简单的规律:当n或m为1时,路径数等于n+m。最终,博主给出了简洁的代码实现来计算总路径数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。
注:沿棋盘格之间的边缘线行走
数据范围: 1≤n,m≤8

例如   输入: 2  2
          输出:6

这里我想了一个很麻烦的解决方案,以n=4,m=4为例:我将它分成左边和右边

 以左边为例:a[0][4]这个地方只有1条线路
                       a[0][3]这个地方有4条线路,这4个线路经过a[1][3],a[2][3],a[3][3],a[4][3],可以设这四个点都为1
                       a[0][2]这个地方有10条线路,10条线路由经过a[1][2]的4条线路,a[2][2]的3条线路,a[3][2]的2条线路,a[4][2]的1条线路
                       a[0][1]这个地方有20条线路,20条线路由经过a[1][1]的10条线路,a[2][1]的6条线路,a[3][1]的3条线路,a[4][1]的1条线路

将a[0][1],a[0][2],a[0][3],a[0][4]的值相加,就得到左边的所有线路,右边按照同样的方法。

以另一幅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值