Dijkstra最短路径算法

自己对伪代码的实现:

#include <iostream>
using namespace std;

const int mvnum=100;
#define MaxInt 32767
typedef int VexType;
typedef int EdgeType;
typedef struct Graph{
	VexType vertex[mvnum];
	EdgeType edge[mvnum][mvnum];
	int vexnum,edgenum;
}Graph;

void CreateGraph(Graph &G);
int LocateVex(Graph &G,VexType v);
void Dijkstra(Graph &G,int start);
int findMinDist(int dist[],int s[],int num);
void display(int dist[],int path[],int start,int num);

void CreateGraph(Graph &G){
	cin>>G.vexnum>>G.edgenum;
	for(int i=0;i<G.vexnum;++i){
		cin>>G.vertex[i];
	}
	for(int i=0;i<G.vexnum;++i){
		for(int j=0;j<G.vexnum;++j){
			G.edge[i][j]=MaxInt;
		}
	}
	for(int k=0;k<G.edgenum;++k){
		VexType v1,v2;
		EdgeType w;
		cin>>v1>>v2>>w;
		int i=LocateVex(G,v1);
		int j=LocateVex(G,v2);
		G.edge[i][j]=w;
		//G.edge[j][i]=G.edge[i][j];
	}
}

int LocateVex(Graph &G,VexType v){
	for(int i=0;i<G.vexnum;++i){
		if(v==G.vertex[i])	return i;
	}
	return -1;
}

void Dijkstra(Graph &G,int start){
	int dist[G.vexnum],path[G.vexnum];//dist数组代表起点到各点最短路径,path数组代表是谁到达该点 
	for(int i=0;i<G.vexnum;++i){
		dist[i]=G.edge[start][i];//dist数组先获取起点直接到各点的距离 
		if(dist[i]!=MaxInt)		path[i]=start;//如果不是无穷大,则起点可以到达该点 ,且此时到达该点的最短点就是起点 
		else	path[i]=-1;
	}
	int s[G.vexnum];
	for(int i=0;i<G.vexnum;++i){
		s[i]=0;
	}
	s[start]=1;//归入集合 
	int num=1;
	while(num<G.vexnum){
		int min=findMinDist(dist,s,G.vexnum);//在dist中查找s[i]==0的最小值元素
		s[min]=1;//归入集合 
		for(int i=0;i<G.vexnum;++i){
			if(s[i]==0&&dist[i]>dist[min]+G.edge[min][i]){
				dist[i]=dist[min]+G.edge[min][i];
				path[i]=min;
			}
		}
		num++;
	}
	display(dist,path,start,G.vexnum);
}

int findMinDist(int dist[],int s[],int num){
	int min=MaxInt,min_index=0;
	for(int i=1;i<num;++i){
		if(s[i]==0&&min>dist[i]){
			min=dist[i];
			min_index=i;
		}	
	}
	return min_index;
}

void display(int dist[],int path[],int start,int num){
	int array[num-1]={0};
	array[num-2]=num-1;
	int i=num-1;int flag=3;
	while(path[i]!=0){
		array[num-flag]=path[i];flag++;
		i=path[i];
	}
	cout<<"最短路径:";
	for(int i=0;i<num-1;++i){
		cout<<array[i]<<" ";
	}
	cout<<"\n路径长度:"<<dist[num-1]<<endl;
}

int main(){
	Graph g;
	CreateGraph(g);
	Dijkstra(g,0);
	return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值