基础散点图
实现代码如下:
import matplotlib.pyplot as plt
import seaborn as sns
# 设置字体为 Microsoft YaHei
plt.rcParams['font.family'] = 'Microsoft YaHei'
# 设置调色板
sns.set_palette("colorblind")
# 绘制散点图
plt.scatter(df["断货次数"], df["asin毛利率H2"])
plt.xlabel("断货次数")
plt.ylabel("asin日均销量")
plt.title('FBA配件asin(2023H2)')
plt.show()
这段代码使用Python的matplotlib和seaborn库来绘制散点图,散点图是一种用于展示两个变量之间关系的图表。下面是代码的逐步解释:
-
import matplotlib.pyplot as plt
和import seaborn as sns
:- 这两行代码导入了matplotlib和seaborn库。matplotlib是一个用于创建静态、交互式和实时的2D图表的Python库。seaborn是基于matplotlib的高级绘图库,它提供了一个高级接口,用于绘制吸引人的统计图形。
-
plt.rcParams['font.family'] = 'Microsoft YaHei'
:- 这行代码设置了图表中使用的字体为Microsoft YaHei,这是一种常用的中文字体,确保中文字符能够正确显示。
-
sns.set_palette("colorblind")
:- 这行代码设置了图表的颜色调色板为“colorblind”,这是一个为色盲用户设计的调色板,使用不同的颜色和图案来区分不同的数据组。
-
plt.scatter(df["断货次数"], df["asin毛利率H2"])
:- 这行代码使用matplotlib的
scatter
函数绘制散点图。 df["断货次数"]
:指定散点图的x轴数据,即每个点的横坐标值。df["asin毛利率H2"]
:指定散点图的y轴数据,即每个点的纵坐标值。
- 这行代码使用matplotlib的
-
plt.xlabel("断货次数")
和plt.ylabel("asin日均销量")
:- 这两行代码分别设置了散点图的x轴和y轴的标签。
-
plt.title('FBA配件asin(2023H2)')
:- 这行代码设置了散点图的标题。
-
plt.show()
:- 这行代码显示了图表。在Jupyter Notebook或其他IDE中,这会导致图表在输出中显示。
import seaborn as sns
import matplotlib.pyplot as plt
# 按照集团和新品程度对数据进行分组
# grouped = df.loc[df['categoryName']=='Headlight Bulbs'].groupby(['集团', '新品程度'])
# 设置调色板
# sns.set_palette("hls")##hls\pastel\colorblind\deep
# 创建一个空的画布
fig, ax = plt.subplots