YOLOv8通过Python文件运行训练和检测

本文介绍了Ultralytics库中的train.py和predict.py脚本,详细解释了如何使用YOLO模型进行训练和预测,涉及的参数包括模型配置、训练设置、设备选择等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习记录

目录

一. train.py

二. predict.py

三.参数


参数

model    传入的model.yaml文件或者model.pt文件,用于构建网络和初始化,不同点在于只传yaml文件的话参数会随机初始化
data        训练数据集的配置yaml文件
epochs    训练轮次,默认100
patience    早停训练观察的轮次,默认50,如果50轮没有精度提升,模型会直接停止训练
batch      训练批次,默认16
imgsz    训练图片大小,默认640
save    保存训练过程和训练权重,默认开启
save_period    训练过程中每x个轮次保存一次训练模型,默认-1(不开启)
cache    是否采用ram进行数据载入,设置True会加快训练速度,但是这个参数非常吃内存,一般服务器才会设置
device    要运行的设备,即cuda device =0或Device =0,1,2,3或device = cpu
workers    载入数据的线程数。windows一般为4,服务器可以大点,windows上这个参数可能会导致线程报错,发现有关线程报错,可以尝试减少这个参数,这个参数默认为8,大部分都是需要减少的
project    项目文件夹的名,默认为runs
name    用于保存训练文件夹名,默认exp,依次累加
exist_ok    是否覆盖现有保存文件夹,默认Flase
pretrained    是否加载预训练权重,默认Flase
optimizer    优化器选择,默认SGD,可选[SGD、Adam、AdamW、RMSProP]
verbose    是否打印详细输出
seed    随机种子,用于复现模型,默认0
deterministic    设置为True,保证实验的可复现性
single_cls    将多类数据训练为单类,把所有数据当作单类训练,默认Flase
image_weights    使用加权图像选择进行训练,默认Flase
rect    使用矩形训练,和矩形推理同理,默认False
cos_lr    使用余弦学习率调度,默认Flase
close_mosaic    最后x个轮次禁用马赛克增强,默认10
resume    断点训练,默认Flase
lr0    初始化学习率,默认0.01
lrf    最终学习率,默认0.01
label_smoothing    标签平滑参数,默认0.0
dropout    使用dropout正则化(仅对训练进行分类),默认0.0

一. train.py

from ultralytics import YOLO

# 加载模型
model = YOLO("D:/DeepL/ultralytics-main/ultralytics/cfg/models/v8/yolov8n.yaml") # 从头开始构建新模型  #训练模型(.pt权重文件)

# Use the model
results = model.train(data="D:/DeepL/ultralytics-main/data.yaml", epochs=100, batch=16, imgsz=160, device=0)  # 训练模型 

device=cpu/0/1/2,其他参数直接加后面

二. predict.py

from ultralytics import YOLO

model = YOLO('D:/DeepL/ultralytics-main/weights/best.pt')
results = model("D:/DeepL/ultralytics-main/testimages", conf=0.05, device=0, save=True)

### YOLOv8 `train.py` 文件的位置或下载方式 YOLOv8 是 Ultralytics 开发的一个开源项目,其源码托管在 GitHub 上。要获取 `train.py` 文件及其相关内容,可以通过以下方法: #### 方法一:克隆官方仓库 Ultralytics 的 YOLOv8 官方代码库位于 [https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics),可以直接通过 Git 克隆整个仓库来获得完整的代码文件运行以下命令即可完成克隆操作: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics/ ``` 在克隆完成后,进入项目的根目录,会发现 `train.py` 文件通常位于顶层目录下或者特定子模块中[^1]。 --- #### 方法二:安装 Python 包并访问内置脚本 另一种更简便的方式是直接通过 pip 工具安装 YOLOv8Python 包。执行以下命令可快速安装最新版本的 YOLOv8 库: ```bash pip install ultralytics ``` 安装成功后,可以在本地环境中调用 `ultralytics` 提供的功能接口,而无需手动查找具体的 `.py` 文件路径。例如,启动训练过程可通过如下命令实现: ```bash yolo task=detect mode=train model=yolov8n.pt data=coco128.yaml epochs=100 imgsz=640 ``` 上述命令实际上是基于内部封装好的逻辑自动加载了 `train.py` 其他必要组件。 --- #### 方法三:在线浏览代码结构 如果不希望立即下载整套工具链,也可以直接访问 Ultralytics 的 GitHub 页面,在线查看 `train.py` 及相关依赖项的内容布局。具体位置可能因版本更新有所调整,但一般遵循清晰的命名约定便于定位。 --- ### 使用场景说明 对于科研实验阶段而言,确实更多涉及的是模型构建与性能评估工作流 (`train.py`, `val.py`);而在实际部署至边缘计算设备如智慧安防摄像头时,则侧重于推理环节(`predict.py`)的应用。 以下是部分常用参数列表作为补充参考资料(适用于 v5 版本概念迁移理解),尽管不同代际间可能存在细微差异但仍具有借鉴意义[^2]: | 参数名 | 描述 | |----------------|----------------------------------------------------------------------| | `--weights` | 初始权重路径 | | `--cfg` | 模型定义 YAML 配置 | | `--data` | 数据集描述 YAML | | `--epochs` | 总迭代次数 | | `--batch-size` | 单次批量样本数目 | 注意:针对最新的 V8 实现细节建议参照官方文档进一步确认最佳实践指南[^3]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值