数学建模微分方程求解以及matlab代码分析

本文介绍了如何在MATLAB中使用dsolve函数解决微分方程,包括利用diff进行求导,以及设置初值条件。此外,还提及了欧拉法和龙格库塔法的实现,指出ode45函数在精度上的优势。对于更深入的理解,建议参考数学建模书籍或MATLAB的帮助文档。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分方程求解

dsolve函数

1.先将函数进行求导,求导使用diff函数
2.matlab中使用dsolve函数
dsolve函数:dsolve(func,cond):
diff表示导数
用**==**表示等式;
cond是函数的取值范围(初值或者边界条件)
例:R2019b后的版本要更改求导公式
syms y(t);
dsolve(diff(y,t) == y)

在这里插入图片描述

syms y(u) a b;
func = diff(y,u,2) == a ^
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值