[Kaggle Courses]数据清洗 Data Cleaning

本文介绍了数据清洗的重要步骤,包括数据鸟瞰以了解数据概况,空值处理策略,如删除和填充空值,以及数据的缩放、归一化和标准化操作。还涉及时间转换、字符编码问题以及如何处理不一致的数据输入。重点介绍了Python中的pandas和sklearn库在数据预处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

数据清洗 是数据科学中的关键一步,它涉及到处理数据空值、删除重复信息、提供正确的数据格式等等。数据清洗往往发生在一个项目最开始的阶段,经常用到的工具是 pandas,还会用到 numpysklearn
通常通过以下方法引入 pandasnumpy

import pandas as pd
import numpy as np

二、数据鸟瞰和空值处理

1. 数据鸟瞰

通过以下方式查看dataframe中的一些例子:

df.head(n)#从顶部计数n
df.tail(n)#从底部计数n
df.sample(n)#可以进行随机抽样

通过以下方式查看dataframe的数值特征和摘要:

df.describe()
df.info()

2. 空值处理

通过以下方法查看dataframe中每列的的空值:

df.isnull().sum()

通过以下方法可以丢弃空值:

df.dropna(axis=0)
#如果axis = 0就丢弃有空值的行row
#如果axis = 1就丢弃有空值的列columns

通过以下方法填充空值:

df.fillna(
	value = Non
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值