给定一个 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。m x n
示例 1:
输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]
示例 2:
输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]
提示:
m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-231 <= matrix[i][j] <= 231 - 1
进阶:
- 一个直观的解决方案是使用
O(m * n)
的额外空间,但这并不是一个好的解决方案。 - 一个简单的改进方案是使用
O(m + n)
的额外空间,但这仍然不是最好的解决方案。 - 你能想出一个仅使用常量空间的解决方案吗?
解法1:使用标记数组
用两个标记数组分别记录每一行和每一列是否有零出现。
我们首先遍历该数组一次,如果某个元素为 0,那么就将该元素所在的行和列所对应标记数组的位置标记为 true。最后我们再次遍历该数组,用标记数组更新原数组即可。
Java版:
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
boolean[] row = new boolean[m];
boolean[] col = new boolean[n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
row[i] = true;
col[j] = true;
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (row[i] || col[j]) {
matrix[i][j] = 0;
}
}
}
}
}
Python3版:
class Solution:
def setZeroes(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
m = len(matrix)
n = len(matrix[0])
row = [False] * m
col = [False] * n
for i in range(m):
for j in range(n):
if matrix[i][j] == 0:
row[i] = True
col[j] = True
for i in range(m):
for j in range(n):
if row[i] or col[j]:
matrix[i][j] = 0
复杂度分析
- 时间复杂度:O(m * n),其中 m 是矩阵的行数, n 是矩阵的列数。我们至多只需要遍历该矩阵两次。
- 空间复杂度:O(m + n),其中 m 是矩阵的行数, n 是矩阵的列数。我们需要分别记录每一行或每一列是否有零出现。
解法2:使用两个标记变量
我们可以用矩阵的第一行和第一列代替方法一中的两个标记数组,以达到 O(1) 的额外空间。但这样会导致原数组的第一行和第一列被修改,无法记录它们是否原本包含 0。因此我们需要额外使用两个标记变量分别记录第一行和第一列是否原本包含 0。
在实际代码中,我们首先预处理出两个标记变量 row0 和 col0 标记第一行和第一列是否含有 0;
接着使用其他行与列去处理第一行与第一列;
然后使用第一行与第一列去更新其他行与列;
最后使用两个标记变量 row0 和 col0 更新第一行与第一列。
Java版:
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int row0 = 1;
int col0 = 1;
for (int i = 0; i < m; i++) {
if (matrix[i][0] == 0) {
col0 = 0;
}
}
for (int i = 0; i < n; i++) {
if (matrix[0][i] == 0) {
row0 = 0;
}
}
// 某一行i,只要有一个元素为0,标记这一行的首列元素matrix[i][0]为0
// 某一列j,只要有一个元素为0,标记这一列的首行元素matrix[0][j]为0
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][j] == 0) {
matrix[i][0] = 0;
matrix[0][j] = 0;
}
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][0] == 0 || matrix[0][j] == 0) {
matrix[i][j] = 0;
}
}
}
if (row0 == 0) {
for (int i = 0; i < n; i++) {
matrix[0][i] = 0;
}
}
if (col0 == 0) {
for (int i = 0; i < m; i++) {
matrix[i][0] = 0;
}
}
}
}
Python3版:
class Solution:
def setZeroes(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
m = len(matrix)
n = len(matrix[0])
row0 = any(matrix[0][i] == 0 for i in range(n))
col0 = any(matrix[i][0] == 0 for i in range(m))
for i in range(1, m):
for j in range(1, n):
if matrix[i][j] == 0:
matrix[i][0] = 0
matrix[0][j] = 0
for i in range(1, m):
for j in range(1, n):
if matrix[i][0] == 0 or matrix[0][j] == 0:
matrix[i][j] = 0
if row0:
for i in range(n):
matrix[0][i] = 0
if col0:
for i in range(m):
matrix[i][0] = 0
复杂度分析
- 时间复杂度:O(m * n),其中 m 是矩阵的行数, n 是矩阵的列数。我们至多只需要遍历该矩阵两次。
- 空间复杂度:O(1)。