jupyter notebook中的kernel管理【附虚拟环境配置】

本人安装的是anaconda3中python3.8.5的版本:
打开其中的anaconda prompt在里面进行kernel的管理

jupyter notebook运行需要的kernel和conda创建的虚拟环境并不能完全互通。我们利用conda创建了虚拟环境,但是启动jupyter notebook之后却找不到虚拟环境。实际上是由于在虚拟环境下缺少kernel.json文件。解决方案如下:

首先安装ipykernel

conda install ipykernel

在虚拟环境下创建kernel文件

conda install -n 环境名称 ipykernel

or

pip install --user ipykernel

将环境写入notebook的kernel中:

python -m ipykernel install --user --name 环境名称 --display-name 你想为kernel添加的名称

2.如果经常需要用jupyter notebook,那么最好在创建虚拟环境的时候便安装好ipykernel:

conda create -n 环境名称 python=3.8.5 ipykernel 

如果notebook中有显示但是还是连接不上的话,可以进入虚拟环境(环境名称如ltp),然后输入以下命令

(base) C:\Users\Administrator> conda activate ltp
(ltp) C:\Users\Administrator>  pip install --user --ignore-installed 
### 配置和使用虚拟环境 为了能够在启动的 Jupyter Notebook配置并使用虚拟环境,需先创建所需的虚拟环境,并确保该环境中已安装 `ipykernel` 库[^1]。 #### 创建虚拟环境并安装依赖库 通过 Anaconda 来管理 Python 的不同版本及其对应的包集合是非常方便的做法。对于每一个想要在 Jupyter Notebook 中使用的特定工作流或者项目而言,建议为其单独建立一个虚拟环境来隔离各个项目的依赖关系。具体操作可以通过以下命令完成: ```bash conda create -n my_env python=3.x # 替换 '3.x' 为你希望使用的Python版本号 conda activate my_env # 激活新创建的虚拟环境 pip install ipykernel # 或者使用 conda 安装:conda install ipykernel ``` 上述指令中的 `-n my_env` 参数指定了新的虚拟环境名为 `my_env`;而后面的 `python=3.x` 则定义了此环境中所要安装的具体 Python 版本[^2]。 #### 将虚拟环境注册到 Jupyter Kernel 为了让 Jupyter 能识别这个新建好的虚拟环境作为可用 kernel,还需要执行一步额外的操作——即把当前激活的虚拟环境添加至 Jupyter Kernels 当中去。这可通过运行下面这条命令实现: ```bash python -m ipykernel install --user --name=my_env --display-name "Python (my_env)" ``` 这里的关键在于 `--name` 和 `--display-name` 这两个选项。前者用于指定内部名称以便于区分不同的 kernels;后者则是用户界面上显示的名字,便于直观理解哪个 kernel 对应哪一个虚拟环境。 一旦完成了以上设置,在重启 Jupyter Notebook 后就可以看到新增加的 Python 环境可供选择了。每当点击 New Button 新建笔记本文件时,应该能在下拉菜单里找到刚才设定的那个带有自定义名字的新 kernel[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值